Math 347 C1
FINAL EXAM
4 August 2006

NAME:_____________________________________
ID:_____________________________________

INSTRUCTIONS:
1. Do each problem.
2. Show all work.
3. No books, no notes, no calculators.
4. Each problem is worth the same number of points.

Score
1. _________
2. _________
3. _________
4. _________
5. _________
6. _________
7. _________
8. _________

TOTAL:_________
1. How many solutions in natural numbers are there for:

\[x_1 + x_2 + x_3 + x_4 = 50. \]
2. Find the coefficients of x^5y^6 and x^3y^8 in $(x + y)^{11}$.
3. Solve: \(a_n = 2a_{n-1} + 3a_{n-2}, \ a_0 = a_1 = 1. \)
4. Prove by induction:
\[
\sum_{k=1}^{n} (2k + 1) = n^2 + 2n.
\]
5. Show that the function $f : R \to R$ given by $f(x) = \frac{x}{1+x^2}$ is not injective.
 (Hint: Divide numerator and denominator by x^2.)
6. Suppose that \(\lim_{x \to 0} f(x) = 0 \). Show that there is a sequence \(\langle x_n \rangle \), such that
\[|f(x_n)| < \frac{1}{n}. \]
7. Show that the congruence \(x^2 \equiv 2 \pmod{5} \) has no solution in \(N \).
8. Let P be the set of all people.
 Let T be the set of all times.
 Let $f(x, t)$ mean that you can fool person x at time t.

Consider the two statements.

i) You can fool all of the people all of the time.

ii) You can never fool anyone.

Express the two statements using P, T, f and quantifiers. Is either statement the negation of the other? Explain.