Let \(p \) be an integer satisfying: whenever \(p | mn \), then \(p | m \) or \(p | n \). Then \(p \) is a prime.

Proof. Suppose that \(p \) is not a prime and \(p \) satisfies the condition above. Then \(p = rs \) with \(r, s > 1 \) and thus \(r, s < p \). Now \(p | rs \) and since \(r, s < p \), it follows that \(p \) \(\not| \) \(r \) and \(p \) \(\not| \) \(s \), a contradiction. Therefore \(p \) is a prime.

Assume that \(d = sa + tb \), all integers. Find infinitely many pairs of integers, \((s_k, t_k)\) such that \(d = s_k a + t_k b \).

Proof. Let \(s_k = s + kb \) and \(t_k = t - ka \), for all positive integers \(k \). Then \(s_k a + t_k b = (s + kb)a + (t - ka)b = sa + kba + tb - kab = sa + tb = d \).

Show that the integer \(M > 0 \) is the lcm of \(a_1, a_2, \ldots, a_n \) if and only if it is a common multiple of \(a_1, a_2, \ldots, a_n \) which divides every other common multiple.

Proof. Suppose that \(M \) is the lcm of \(a_1, a_2, \ldots, a_n \) and that \(N \) is another common multiple. Then by the division algorithm, \(N = Mq + r \) with \(0 \leq r < M \). Thus \(a_i | N \) and \(a_i | M \) for all \(i \) and therefore \(a_i | r \) for all \(i \). Hence \(r \) is a common multiple of \(a_1, a_2, \ldots, a_n \) and \(r < M \) which is the LEAST common multiple. Therefore \(r = 0 \) and so \(M \) is a divisor of \(N \).

Now assume that \(M \) is a common multiple of \(a_1, a_2, \ldots, a_n \) which divides every other common multiple. Then \(M \) is smaller than every other common multiple and hence is the lcm.

(i) Show that \(\alpha^r = 1 \) if \(\alpha \) is an \(r \)-cycle.

(ii) Show that \(r \) is the smallest positive integer satisfying \(\alpha^r = 1 \) for the \(r \)-cycle \(\alpha \).

Proof. (i) Let \(\alpha \) be described as in the definition on Page 99. Then \(\alpha^j(i_r) = i_{r+j} \) with \(r + j \) reduced modulo \(r \) when \(i + j > r \). Then \(\alpha^r(i_s) = i_{s+r} = i_s \) for all \(s \). Thus \(\alpha^r = 1 \).

(ii) \(\alpha^k(i_1) = i_{1+k} \) ands if \(k < r \), \(i_{1+k} \neq i_1 \). Thus \(\alpha^k \neq 1 \).

(i) Prove that if \(\alpha \) and \(\beta \) are commuting permutations, then \((\alpha \cdot \beta)^k = \alpha^k \cdot \beta^k \).

(ii) Find 2 permutations \(\alpha \) and \(\beta \) such that \((\alpha \cdot \beta)^2 \neq \alpha^2 \cdot \beta^2 \).

Proof. (i) \((\alpha \cdot \beta)^k = (\alpha \cdot \beta) \cdot (\alpha \cdot \beta) \ldots (\alpha \cdot \beta) \) \(k \) times. Since \(\alpha \cdot \beta = \beta \cdot \alpha \), we can move all
of the α s to the left and all of the β s to the right, giving $\alpha^k \cdot \beta^k$.

(ii) Let $\alpha = (12)$ and $\beta = (13)$.

Page 114, 2.26:

(i) Show that α moves i iff α^{-1} moves i, for all $\alpha \in S_n$.

(ii) Show that if $\alpha, \beta \in S_n$ are disjoint and $\alpha \beta = 1$, then $\alpha = \beta = 1$.

Proof. (i) If $\alpha(i) = j, j \neq i$ and $\alpha^{-1}(i) = i$, then $\alpha \alpha^{-1}(i) = \alpha(i) = j$, a contradiction since $\alpha \alpha^{-1} = 1$. The converse is similar.

(ii) If $\beta(i) = j, j \neq i$, then $\alpha(j) = j$ since they are disjoint, and so $\alpha \beta(i) = j$, contradicting: $\alpha \beta = 1$. Thus $\beta(i) = i$ for all i and $\beta = 1$. Therefore $\alpha = 1$.

Page 115, 2.29:

Find nontrivial permutations α, β, γ in S_5 such that $\alpha \beta = \beta \alpha$, $\alpha \gamma = \gamma \alpha$, but $\beta \gamma \neq \gamma \beta$.

Proof. Let $\alpha = (12), \beta = (34), \gamma = (35)$.

Page 115, 2.30:

Show that if $\alpha \in S_n$ commutes with every $\beta \in S_n$, $n \geq 3$, then $\alpha = 1$.

Proof. Suppose that α commutes with all permutations in S_n and $\alpha \neq 1$. Then there are distinct integers, i, j such that $\alpha(i) = j$. Let k be a third integer, different from i and j and let $\beta = (jk)$. Thus $\alpha \beta(i) = \alpha(i) = j$, while $\beta \alpha(i) = \beta(j) = k$. Thus $\alpha \beta \neq \beta \alpha$ and therefore $\alpha = 1$.

Page 133, 2.37:

If y is a group element of order $m = pt$ for some prime p, show that y^t has order p.

Proof. Clearly $(y^t)^p = y^{pt} = e$. By Lemma 2.24, the order of y^t must divide p. But p is a prime and so the order of y^t is either 1 or p. But $y^t \neq e$ and so its order must be p.

Page 133, 2.39: Let $G = GL(2, Q)$ and let $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. Show that $A^4 = E = B^6$, but that $(AB)^n \neq E$ for all $n > 0$.

Proof. We can show that $A^4 = E = B^6$ by direct calculation.

Now consider $AB = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

$(AB)^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$ and we can show by induction that $(AB)^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$. Thus $(AB)^n \neq E$ for all $n > 0$.童
Page 134, 2.41:
Let G be a group in which $x^2 = e$ for all elements $x \in G$. Show that G is abelian.

Proof. Let $a, b \in G$. Then $(ab)^2 = abab = e$. Now consider the equation $abab = e$, multiply on the right by b^{-1} and on the left by a^{-1} giving $ba = a^{-1}b^{-1}$. But since every element satisfies $x^2 = e$, each element is its own inverse. Therefore $ba = a^{-1}b^{-1} = ab$ and so G is abelian.

Page 134, 2.42:
Suppose that G is a group with an even number of elements. Show that the number of elements of order 2 is odd.

Proof. Let A be the elements of G of odd order, not including the identity. Each element of A can be paired with its inverse which is also an element of A. Thus A has an even number of elements. If there are an even number of elements of order 2 in G, then together with the identity and A, there would be an odd number of elements in G, contradiction. Thus there are an odd number of elements in G of order 2.

Page 142, 2.51: Show that if G is a cyclic group of order n and $d|n$, then G has a subgroup of order d.

Proof. Since $d|n$, then $n = dk$, for some k. Let a be a generator of G and consider a^k. Clearly $(a^k)^d = a^{kd} = e$. If the order of a^k were smaller than d, then the order of a would be smaller than n, contradiction. Therefore a^k has order d and so generates a subgroup of order d.

Page 142, 2.50:
Prove that every subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle a \rangle$ and Let $H \leq G$. Thus $H = \{a^{s_1}, a^{s_2}, \ldots, a^{s_i}, \ldots\}$. Now among the powers s_i, there must be at least one positive integer. For if $a^{s_i} \in H$, then $a^{-s_i} \in H$, since H is a subgroup of G. Thus let s be the smallest positive integer among the s_i and we will show that a^s generates H. If $a^{s_j} \in H$, then dividing s_j by s, we get

$$s_j = s \cdot q + r,$$

$$0 \leq r < s.$$

Thus $a^{s_j} = a^{s \cdot q + r} = a^{s \cdot q} \cdot a^r = (a^s)^q \cdot a^r$. Now since $a^{s_j}, (a^s)^q \in H$, then $a^r \in H$. But s was the smallest positive integer such that $a^s \in H$. Therefore $r = 0$ and $a^{s_j} = (a^s)^q$, whence $H = \langle a^s \rangle$.

Page 177, 2.85: Let the finite group G have a normal subgroup K with $([G : K], |K|) = 1$. Prove that K is the unique subgroup of G of order $|K|$.

Proof. First recall that $[G : K] = |G/K|$. Suppose that G has another subgroup H with $|H| = |K|$. Since K is normal in G, HK is a subgroup of G and K is normal in HK. The Second Isomorphism Theorem states that

$$HK/K \cong H/H \cap K.$$
Now, on the one hand, HK/K is a subgroup of G/K and so $|HK/K| = r$ divides $|G/K| = [G : K]$. On the other hand, $H/H \cap K$ is a quotient group of H and so $|H/H \cap K| = r$ divides $|H| = |K|$. Thus r divides both $[G : K]$ and $|K|$ which are relatively prime. Therefore $r = |HK/K| = 1$ and so $HK = K$ which implies that $H \leq K$. But $|H| = |K|$ and so $H = K$.