Part II: Elliptic curves for the homotopy theorist

Knowns and unknowns in the world of topological modular forms

Vesna Stojanoska

Massachusetts Institute of Technology

Young Women in Topology
Bochum, July 6-8 2012
Recall

- $\pi^S_* \to \Omega^G_* \to E^{-*}$
- Ω^U_* has a universal formal group law (of dimension one)
- Height filtration
- Need formal group laws of various heights
 - Simplest method: Complete a one-dimensional algebraic group at its identity section
 - Only examples: \mathbb{G}_a, \mathbb{G}_m, and elliptic curves
What is an elliptic curve?

Definition
An elliptic curve over a base scheme S is a pair of morphisms $p : C \leftrightarrow S : e$, such that

- p is flat, proper, smooth morphism of relative dimension one, such that each fiber is a curve of genus one, and
- e is a section of p.

Theorem
An elliptic curve C/S has a unique group structure with e as the identity.
The group structure

Let $p : C \equiv S : e$ be an elliptic curve, T an S-scheme. If P, Q, R are T-points of C, then

$$P + Q = R$$

iff there is an invertible sheaf \mathcal{L}_0 on T and an iso

$$\mathcal{I}^{-1}(P) \otimes \mathcal{I}^{-1}(Q) \otimes \mathcal{I}(e) \cong \mathcal{I}^{-1}(R) \otimes p^*_T(\mathcal{L}_0).$$

In other words,

$$P \mapsto \mathcal{I}^{-1}(P) \otimes \mathcal{I}(e)$$

$$C(T) \xleftrightarrow{1-1} \text{Pic}^{(0)}(C_T/T) = \begin{cases} \text{the abelian group of iso classes} \\ \text{of invertible sheaves on } C_T, \text{ which are} \\ \text{fiberwise of degree zero, modulo those} \\ \text{of form } p^* T(\mathcal{L}_0) \end{cases}$$
Invariant differentials

Let $p : C \leftrightarrow S : e$ be an elliptic curve, and $\Omega^1_{C/S}$ the sheaf of Kähler differentials on C.

Definition
The sheaf of invariant differentials on S is

$$\omega_C = p_*\Omega^1_{C/S} = p_*\mathcal{I}(e)/\mathcal{I}(e)^2.$$

ω_C is an invertible line bundle, and locally on S we can choose a generator η.
Riemann-Roch theorem \Rightarrow For $n \geq 1$, $p_*\mathcal{I}^{-n}(e)$ is locally free of rank n.

Having chosen a generator of ω_C, we have:

- $p_*\mathcal{I}^{-2}(e)$ free on 1, x
 - x is unique up to $x \mapsto u^{-2}x + r$
- $p_*\mathcal{I}^{-3}(e)$ free on 1, x, y
 - y is unique up to $y \mapsto u^{-3}y + u^{-2}sx + t$
- $p_*\mathcal{I}^{-4}(e)$ free on 1, x, y, x^2
- $p_*\mathcal{I}^{-5}(e)$ free on 1, x, y, x^2, xy
- $p_*\mathcal{I}^{-6}(e)$ free on 1, x, y, x^2, xy, x^3 or 1, x, y, x^2, xy, y^2
Weierstrass equations

Hence a relation

\[C_{\text{weier}} : \quad y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6. \]

Conversely, any smooth Weierstrass curve is elliptic.

Example

- Legendre curves: \(y^2 = x(x - 1)(x - \lambda) \)
- Tate normal curves: \(y^2 + \alpha xy + y = x^3 \)
- Nodal curve: \(y^2 = x^3 + x \)
- Cusp curve: \(y^2 = x^3 \)
Weierstrass moduli stack

Classify

\[C_{\text{weier}} : \quad y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

modulo change of variables

\[\eta_R : x \mapsto u^{-2} x + r \]
\[y \mapsto u^{-3} y + u^{-2} s x + t \]

\[A = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6] , \quad \Gamma = A[u^{\pm 1}, r, s, t] \]

\((A, \Gamma)\) is a Hopf algebroid: \(A \xrightarrow{\eta_L} \Gamma \xleftarrow{\eta_R} \Gamma \)

The moduli stack of Weierstrass curves \(\mathcal{M}_{\text{weier}} \) is the stackification (homotopy coequalizer) of \((A, \Gamma)\)

\[(\text{Spec } \Gamma \rightrightarrows \text{Spec } A) \to \mathcal{M}_{\text{weier}}\]
Some invariants

\[(A, \Gamma)[1/2] \simeq (A_b = \mathbb{Z}[1/2][b_2, b_4, b_6], A_b[u^\pm 1, r]) \text{ with} \]
\[C_{\text{weier}} : \quad y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6\]

\[(A, \Gamma)[1/6] \simeq (A_c = \mathbb{Z}[1/6][c_4, c_6], A_c[u^\pm 1]) \simeq \text{Proj } \mathbb{Z}[1/6][c_4, c_6] \text{ with} \]
\[C_{\text{weier}} : \quad y^2 = x^3 - 27c_4x - 54c_6\]

\[\Delta = \frac{c_4^3 - c_6^2}{12^3} \quad j = \frac{c_4^3}{\Delta}\]

c_i, \Delta, j are defined for any Weierstrass curve.
Under a generic linear transformation,
\[c_i \mapsto u^i c_i \quad \Delta \mapsto u^{12}\Delta \quad j \mapsto j\]
Moduli stacks of elliptic curves

\(C_{weier} \) is smooth if and only if \(\Delta \) is invertible, implying

Proposition

The moduli stack of elliptic curves \(\mathcal{M} \) is

\[
\mathcal{M} = \text{Stack}(A[\Delta^{-1}], \Gamma[\Delta^{-1}]).
\]

Consider \(j : \mathcal{M} \to \mathbb{A}^1 \). To compactify, allow \(j = \infty \).

The moduli stack of generalized elliptic curves \(\tilde{\mathcal{M}} \) is the substack of \(\mathcal{M}_{weier} \) defined by the invertibility of the ideal \((c_4, \Delta)\).

\(\tilde{\mathcal{M}} \) classifies curves of genus one which are smooth or have a nodal singularity.
Modular forms

\[\omega : (S \xrightarrow{C} \overline{M}) \mapsto \omega_C \] is an invertible line bundle on \(\mathcal{M} \) as well as \(\overline{M} \).

Definition

The ring of modular forms \(MF_* \) is the graded ring of global sections

\[H^0(\overline{M}, \omega^*) \].

Exercise

\[MF_* = \mathbb{Z}[c_4, c_6, \Delta] / (12^3 \Delta = c_4^3 - c_6^2). \]
Level structures

If C/S is a smooth elliptic curve over a base on which n is invertible,

$$C[n] \cong (\mathbb{Z}/n)^2.$$

Definition

- A $\Gamma(n)$ or level n structure is an iso $(\mathbb{Z}/n)^2 \to C[n]$
- A $\Gamma_1(n)$-structure is an injection $\mathbb{Z}/n \hookrightarrow C[n]$
- A $\Gamma_0(n)$-structure is a cyclic subgroup $H \hookrightarrow C$ of order n

The corresponding moduli stacks are $\mathcal{M}(n)$, $\mathcal{M}_1(n)$, $\mathcal{M}_0(n)$.
Level n structures at the cusps

Let C_0 be the nodal generalized elliptic curve. Then

$$C_0 \cong \mathbb{P}^1/(0 \sim \infty) \quad \Rightarrow \quad C_0[n] \cong \mu_n.$$

Replace C by $\tilde{C} \cong ((\mathbb{Z}/n) \times \mathbb{P}^1) / (\sim)$. Then $\tilde{C}[n] \cong (\mathbb{Z}/n)^2$.
Group action

- $GL_2(\mathbb{Z}/n) = \text{Aut}(\mathbb{Z}/n)^2$ acts freely and transitively on level n structures of a smooth elliptic curve C

- For singular curves, $U = \left\{ \pm \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \right\}$ acts trivially

Forget the level structure \leadsto

$$f : \tilde{\mathcal{M}}(n) \to \tilde{\mathcal{M}}[1/n].$$

Over the smooth locus, f is a $GL_2(\mathbb{Z}/n)$-torsor. Over the cusp, ramified of degree $2n$.