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The motivating unknown: homotopy groups of spheres

Question
What are all maps f : Sn+k → Sn, up to homotopy? Stably?

Example

If k = 0, f is determined by its degree.

If x is a regular value of f , the degree of f equals the cardinality of
f −1(x).
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Manifolds in spheres

What if k > 0?

f −1(x) is a k-manifold embedded in Sn+k , equipped with a
framing of its normal bundle.
f0 ≃ f1  a (framed) cobordism between f −1

0 (x) and f −1
1 (x).

Theorem (Pontryagin)

The homotopy class of f is completely determined by the geometry

of the inverse image f −1 of a small neighborhood of a regular

value. Namely,

πn+k(S
n) ≃ Ωfr

k (S
n+k).
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And more manifolds in spheres

Example

π3(S
2) = Z, generated by the Hopf fibration S3 → S2, which

corresponds to S1 embedded in S3 as usual but with a twisted
trivialization of its normal bundle.

Bad news: πn+k(S
n) ≃ Ωfr

k (S
n+k) is extremely complicated! Going

stable helps, but πs
∗ = colimn πn+kS

k is still daunting.

Coping mechanism: ΩU
∗

ΩO
∗

πs
∗ ≃ Ωfr

∗
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Genera

ΩG
∗ : bordism ring of manifolds with G -structure on their stable

normal bundle.

Definition
An R-valued genus is a (graded) ring homomorphism ΩG

∗ → R .
A complex genus is a map φ : ΩU → R .

Example (Cardinality for zero-dimensional manifolds)

ΩO
∗ → Z/2 ΩO

∗ = Z/2[xi ]i 6=2j

ΩSO
∗ → Z ΩSO

∗ ⊗Q ∼= Q[CP2,CP4, . . . ]

sending positive-dimensional manifolds to zero.
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More examples

Example (Todd genus)

The Todd genus Td has R = Z[u], with deg u = 2.
ΩU
∗ ⊗Q ∼= Q[CP1,CP2, . . . ], and Td(CPk) = uk .

Example (Â-genus)

Maps a spin manifold Mn to the index of its Dirac operator.

◮ n ≡ 0(8), Â(Mn) is an integer

◮ n ≡ 4(8), Â(Mn) is an even integer

◮ n ≡ 1(8), Â(Mn) is defined mod 2

Example (Witten genus)

Assigns a modular form to a (compact, oriented, smooth) spin
manifold with vanishing first Pontryagin class.
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Spectra

Cobordism in families  cohomology theory

E : (Spaces)op // (Gr .Modules)

X
�

// E ∗(X )

such that

◮ f ≃ g =⇒ E ∗(f ) = E ∗(g)

◮ Mayer-Vietoris sequences

Cohomology theories are represented by spectra.

Example

◮ Cobordism ΩG

◮ Singular cohomology theory HZ, HZ/p...

◮ Complex and real K -theory, K and KO
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Genera again

Definition
An genus is a map of multiplicative cohomology theories (ring
spectra)

ΩG
→ E .

Also known as a G -orientation for E , because it gives a theory of
Thom classes for bundles with G -structure.

Example

Cardinality ΩO → HZ/2

ΩSO → HZ

Todd genus ΩU → K

Â− genus ΩSpin → KO

Witten genus ΩString → TMF .
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Formal group laws

Theorem (Quillen)

ΩU
∗ carries a universal formal group law.

ΩU → E and µ : CP∞ × CP∞ → CP∞
 

E 0[[x ]] ∼= E 0(CP∞) // E 0(CP∞ × CP∞) ∼= E 0[[x , y ]]

x
�

// F (x , y) = x +F y

Definition/Properties

◮ x +F 0 = x = 0 +F x

◮ (x +F y) +F z = x +F (y +F z)

◮ x +F y = y +F x
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Examples

Formal completions of algebraic groups of dimension 1

◮ Additive group Ga

◮ F (x , y) = x + y
◮ HZ, HZ/p

◮ Multiplicative group Gm

◮ F (x , y) = x + y + uxy , where u is a unit
◮ K , u = ±1 or the Bott class

◮ Elliptic curves
◮ next time!
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Logarithms

Rationally, every formal group law is isomorphic to the additive!

◮ ∃f (x) ∈ R [[x ]]⊗Q, with f ′(0) = x , such that
f (x +F y) = f (x) + f (y)

Such an f is called a logarithm for F .

Example

log
Ĝm

= log(1 + x) = x − x2

2 + x3

3 − . . .
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Height of a formal group law

Pick a prime p, an Fp-algebra R , and a formal group law F over R .
The p-series of F is [p]x = [p]F (x) = x +F · · ·+F x

︸ ︷︷ ︸

p times

.

Example

[p]
Ĝa
(x) = 0

[p]
Ĝm

(x) = up−1xpφ, where φ ∈ (R [[x ]])×

Definition
F has height n if [p]F (x) has leading term axp

n
. If [p]F (x) = 0,

the height of F is ∞.

For any n ≥ 1, there is a formal group law of height n, and any
two are isomorphic (after an étale extension).
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Chromatic homotopy theory

Heights induce the chromatic filtration on πs
∗.

If E is a complex oriented cohomology theory with a formal group
law of height n, then

πs
∗ → ΩU

∗ → E−∗

captures info about filtration at most n.

◮ πs
∗ → HZ−∗ = Z

◮ πs
∗ → K−∗ height one

◮ KO is not complex orientable, but πs
∗ → ΩSpin

∗ → KO−∗ is the
best approximation we have of height one data
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Closing remarks

◮ There is a way to translate and improve a lot of this into
derived algebraic geometry

◮ By work of Lurie, in finding structured cohomology theories
with higher height fgl’s, p-divisible groups are needed (more
general than formal groups)

◮ moduli of elliptic curves (height at most 2)  TMF
◮ moduli of some higher dimensional abelian varieties (arbitrary

height)  TAF (Behrens-Lawson)
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To be continued with

◮ Elliptic curves for the homotopy theorist

◮ Topological modular forms of various sorts

◮ A lot of duality
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