Duality and Topological Modular Forms

Vesna Stojanoska

MIT

January 7, 2012
Special Session on Homotopy theory
Joint Meetings of the AMS
Boston
Definition

A dualizing A-module (complex) is an A-module K such that
Dualizing Modules in Algebra

Definition

A *dualizing A-module (complex)* is an A-module K such that

(i) for any A-module M, $M \xrightarrow{\sim} \text{Hom}_A(\text{Hom}_A(M, K), K)$,
Definition

A dualizing A-module (complex) is an A-module K such that

(i) for any A-module M, $M \sim \Hom_A(\Hom_A(M, K), K)$,

(ii) K has a finite injective dimension.
Definition

A dualizing A-module (complex) is an A-module K such that

(i) for any A-module M, $M \sim \text{Hom}_A(\text{Hom}_A(M, K), K)$,

(ii) K has a finite injective dimension.

Given (ii), condition (i) is equivalent to

(i)' The double duality map $A \rightarrow \text{Hom}_A(K, K)$ is an isomorphism.
Definition

A dualizing A-module (complex) is an A-module K such that

(i) for any A-module M, $M \cong \text{Hom}_A(\text{Hom}_A(M, K), K)$,

(ii) K has a finite injective dimension.

Given (ii), condition (i) is equivalent to

(i)' The double duality map $A \to \text{Hom}_A(K, K)$ is an isomorphism.

Example

\mathbb{Z} is a dualizing \mathbb{Z}-module.
In algebraic geometry, modules are sheaves and the same definition holds, giving rise to Grothendieck-Serre duality.
In algebraic geometry, modules are sheaves and the same definition holds, giving rise to Grothendieck-Serre duality.

Example

For the projective line $f : \mathbb{P}^1 \to \text{Spec } \mathbb{Z}$, the sheaf of Kahler differentials $\Omega_{\mathbb{P}^1}$ is a dualizing module.
Definition
Definition

For a ring spectrum A, a *dualizing A-module* is an A-module K such that
Definition

For a ring spectrum A, a \textit{dualizing A-module} is an A-module K such that

(i) the double duality map $A \to F_A(K, K)$ is an equivalence,
Definition

For a ring spectrum A, a \textit{dualizing A-module} is an A-module K such that

(i) the double duality map $A \to F_A(K, K)$ is an equivalence,

(ii) π_iK is a finitely generated π_0A-module,
Definition

For a ring spectrum A, a dualizing A-module is an A-module K such that

(i) the double duality map $A \to F_A(K, K)$ is an equivalence,

(ii) $\pi_i K$ is a finitely generated $\pi_0 A$-module,

$\pi_i K = 0$ for i large enough, and
Definition

For a ring spectrum A, a *dualizing A-module* is an A-module K such that

(i) the double duality map $A \to F_A(K, K)$ is an equivalence,

(ii) $\pi_i K$ is a finitely generated π_0A-module,

 - $\pi_i K = 0$ for i large enough, and

 - K has a finite injective dimension, i.e. there exists an integer n such that if M is an A-module with $\pi_i M = 0$ for $i > n$, then $\pi_i F_A(M, K) = 0$ for $i < 0$.

Vesna Stojanoska

Duality and Tmf
Definition

For a ring spectrum \(A \), a \textit{dualizing} \(A \)-\textit{module} is an \(A \)-module \(K \) such that

(i) the double duality map \(A \to F_A(K, K) \) is an equivalence,

(ii) \(\pi_i K \) is a finitely generated \(\pi_0 A \)-module,

\(\pi_i K = 0 \) for \(i \) large enough, and

\(K \) has a finite injective dimension, i.e. there exists an integer \(n \) such that if \(M \) is an \(A \)-module with \(\pi_i M = 0 \) for \(i > n \), then \(\pi_i F_A(M, K) = 0 \) for \(i < 0 \).

Example

The sphere spectrum \(S \) is \textit{not} a dualizing module over itself!
Brown-Comenetz spectrum \mathbb{Q}/\mathbb{Z}
Anderson Duality

Brown-Comenetz spectrum $l_{\mathbb{Q}/\mathbb{Z}}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_* X, \mathbb{Q}/\mathbb{Z}) \]
Anderson Duality

Brown-Comenetz spectrum $I_{\mathbb{Q}/\mathbb{Z}}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_* X, \mathbb{Q}/\mathbb{Z}) \]

Rational Eilenberg-MacLane spectrum $H\mathbb{Q}$
Anderson Duality

Brown-Comenetz spectrum $I_{Q/Z}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_* X, \mathbb{Q}/\mathbb{Z}) \]

Rational Eilenberg-MacLane spectrum $H_{\mathbb{Q}}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_* X, \mathbb{Q}) \]
Anderson Duality

Brown-Comenetz spectrum $I_{\mathbb{Q}/\mathbb{Z}}$

$$X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-*}X, \mathbb{Q}/\mathbb{Z})$$

Rational Eilenberg-MacLane spectrum $H_{\mathbb{Q}}$

$$X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-*}X, \mathbb{Q})$$

Anderson spectrum $I_{\mathbb{Z}}$
Anderson Duality

Brown-Comenetz spectrum $I_{\mathbb{Q}/\mathbb{Z}}$

$$X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-*}X, \mathbb{Q}/\mathbb{Z})$$

Rational Eilenberg-MacLane spectrum $H\mathbb{Q}$

$$X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-*}X, \mathbb{Q})$$

Anderson spectrum $I_{\mathbb{Z}}$

fiber sequence $I_{\mathbb{Z}} \to H\mathbb{Q} \to I_{\mathbb{Q}/\mathbb{Z}}$
Anderson Duality

Brown-Comenetz spectrum $I_{\mathbb{Q}/\mathbb{Z}}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-\ast}X, \mathbb{Q}/\mathbb{Z}) \]

Rational Eilenberg-MacLane spectrum $H\mathbb{Q}$

\[X \mapsto \text{Hom}_{\mathbb{Z}}(\pi_{-\ast}X, \mathbb{Q}) \]

Anderson spectrum $I_{\mathbb{Z}}$

fiber sequence $I_{\mathbb{Z}} \rightarrow H\mathbb{Q} \rightarrow I_{\mathbb{Q}/\mathbb{Z}}$

Example

The Anderson spectrum $I_{\mathbb{Z}}$ is a dualizing S-module.
Eilenberg-MacLane spectra HM, M finite or free
Self-dual Spectra

- Eilenberg-MacLane spectra HM, M finite or free
- Complex and real K-theory
Eilenberg-MacLane spectra HM, M finite or free

Complex and real K-theory

Tmf, $Tmf(p)$
Self-dual Spectra

- Eilenberg-MacLane spectra HM, M finite or free
- Complex and real K-theory
- Tmf, $Tmf(p)$
- ...?
Duality for K-theory

$I_{\mathbb{Z}} K \cong K$
Duality for K-theory

$I_\mathbb{Z} K \cong K$

K^{C_2} and $KO \cong K^{hC_2}$
\[I_\mathbb{Z} K \cong K \]

\[K \overset{\mathbb{C}_2}{\cong} \text{and } KO \cong K^{h\mathbb{C}_2} \]

\[(BC_2, K) \overset{f}{\rightarrow} \text{Spec } S \]
Duality for K-theory

$I_{\mathbb{Z}}K \simeq K$

K^{C_2} and $KO \simeq K^{hC_2}$

$(BC_2, K) \overset{f}{\rightarrow} \text{Spec } S$

derived stack, $R\Gamma = (_)^{hC_2}$
Duality for K-theory

\[\mathbb{I}_\mathbb{Z}K \simeq K \]

\[K^\mathbb{C}_2 \text{ and } KO \simeq K^{hC_2} \]

\[(BC_2, K) \xrightarrow{f} \text{Spec } S \]

derived stack, $R\Gamma = (-)^{hC_2}$

\[\mathbb{I}_\mathbb{Z}KO = F(R\Gamma K, \mathbb{I}_\mathbb{Z}) \]
Duality for K-theory

$I_{\mathbb{Z}}K \simeq K$

$K \wedge_{C_2} \text{ and } KO \simeq K^{hC_2}$

$(BC_2, K) \xrightarrow{f} \text{Spec } S$

derived stack, $R\Gamma = (-)^{hC_2}$

$I_{\mathbb{Z}}KO = F(R\Gamma K, I_{\mathbb{Z}})$

norm $K_{hC_2} \to K^{hC_2}$ is an equivalence
Duality for K-theory

$I\mathbb{Z}K \simeq K$

$K^\otimes_{C_2}$ and $KO \simeq K^{hC_2}$

$(BC_2, K) \xrightarrow{f} \text{Spec } S$

derived stack, $R\Gamma = (-)^{hC_2}$

$I\mathbb{Z}KO = F(R\Gamma K, I\mathbb{Z})$

norm $K_{hC_2} \to K^{hC_2}$ is an equivalence

$(K^{tC_2} \simeq *)$
Duality for K-theory

\[\mathbb{I}_\mathbb{Z} K \cong K \]

$K \circlearrowleft C_2$ and $KO \cong K^{hC_2}$

\[(BC_2, K) \xrightarrow{f} \text{Spec } S\]

derived stack, $R\Gamma = (-)^{hC_2}$

\[\mathbb{I}_\mathbb{Z} KO = F(R\Gamma K, \mathbb{I}_\mathbb{Z}) \cong (\mathbb{I}_\mathbb{Z} K)^{hC_2} \]

norm $K_{hC_2} \to K^{hC_2}$ is an equivalence

\[(K^{tC_2} \cong *) \]
Duality for K-theory

$I_{\mathbb{Z}}K \simeq K$

$K \langle C_2 \rangle$ and $KO \simeq K^{hC_2}$

$(BC_2, K) \xrightarrow{f} \text{Spec } S$

derived stack, $R\Gamma = (-)^{hC_2}$

$I_{\mathbb{Z}}KO = F(R\Gamma K, I_{\mathbb{Z}}) \simeq (I_{\mathbb{Z}}K)^{hC_2} = \Sigma^4 KO$

norm $K_{hC_2} \to K^{hC_2}$ is an equivalence

$(K^{tC_2} \simeq *)$
Duality for K-theory

$I_{\mathbb{Z}}K \cong K$

$K \otimes_{C_2} K \otimes C_2$ and $KO \cong K^{hC_2}$

$(BC_2, K) \xrightarrow{f} \text{Spec } S$

derived stack, $R\Gamma = (-)^{hC_2}$

$I_{\mathbb{Z}}KO = F(R\Gamma K, I_{\mathbb{Z}}) \cong (I_{\mathbb{Z}}K)^{hC_2} = \Sigma^4 KO$

norm $K_{hC_2} \to K^{hC_2}$ is an equivalence

$(K^{tC_2} \cong *)$

Warning Does not work for trivial action, or for K_G.
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{\text{top}}) \xrightarrow{f} \text{Spec } S$
Derived stack $(\mathcal{M}, \mathcal{O}_{\text{top}}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)
Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$R\Gamma \mathcal{O}^{top} = Tmf$
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$R\Gamma \mathcal{O}^{top} = Tmf$

$\mathcal{M}(p) \to \mathcal{M}[1/p]$
Derived stack \((\mathcal{M}, \mathcal{O}^{\text{top}}) \xrightarrow{\phi} \text{Spec } S\)

(compactified moduli stack of elliptic curves)

\(R\Gamma \mathcal{O}^{\text{top}} = Tmf\)

\(\mathcal{M}(p) \rightarrow \mathcal{M}[1/p]\)

an \(SL_2(\mathbb{Z}/p)\)-cover, ramified at infinity
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$$R\Gamma \mathcal{O}^{top} = Tmf$$

$\mathcal{M}(p) \rightarrow \mathcal{M}[1/p]$

an $SL_2(\mathbb{Z}/p)$-cover, ramified at infinity

Construct $\mathcal{O}(p)^{top}$ and $Tmf(p) = R\Gamma \mathcal{O}(p)^{top}$
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$R\Gamma \mathcal{O}^{top} = Tmf$

$\mathcal{M}(p) \to \mathcal{M}[1/p]$

an $SL_2(\mathbb{Z}/p)$-cover, ramified at infinity

Construct $\mathcal{O}(p)^{top}$ and $Tmf(p) = R\Gamma \mathcal{O}(p)^{top}$

Cusps: $\coprod_{SL_2(\mathbb{Z}/p)/U} \text{Spf } \mathbb{Z}[[q^{1/p}]] \to \text{Spf } \mathbb{Z}[[q]]$
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$R\Gamma \mathcal{O}^{top} = Tmf$

$\mathcal{M}(p) \to \mathcal{M}[1/p]$

an $SL_2(\mathbb{Z}/p)$-cover, ramified at infinity

Construct $\mathcal{O}(p)^{top}$ and $Tmf(p) = R\Gamma \mathcal{O}(p)^{top}$

Cusps: \[
\coprod_{SL_2(\mathbb{Z}/p)/U} \text{Spf } \mathbb{Z}[[q^{1/p}]] \to \text{Spf } \mathbb{Z}[[q]]
\]

($U \cong C_p$ is the upper-triangular matrices)
Tmf and level structures

Derived stack \((\mathcal{M}, \mathcal{O}^{\text{top}}) \xrightarrow{f} \text{Spec } S\)

(compactified moduli stack of elliptic curves)

\[R\Gamma \mathcal{O}^{\text{top}} = \text{Tmf} \]

\[\mathcal{M}(p) \to \mathcal{M}[1/p] \]

an \(SL_2(\mathbb{Z}/p)\)-cover, ramified at infinity

Construct \(\mathcal{O}(p)^{\text{top}}\) and \(\text{Tmf}(p) = R\Gamma \mathcal{O}(p)^{\text{top}}\)

\[\text{Cusps : } \coprod_{SL_2(\mathbb{Z}/p)/U} \text{Spf } \mathbb{Z}[[q^{1/p}]] \to \text{Spf } \mathbb{Z}[[q]] \]

\((U \cong C_p \text{ is the upper-triangular matrices})\)

\[K[[q^{1/p}]] \text{ has } U\text{-action} \]
Tmf and level structures

Derived stack \((\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S\)

(compactified moduli stack of elliptic curves)

\[R\Gamma \mathcal{O}^{top} = Tmf \]

\[\mathcal{M}(p) \to \mathcal{M}[1/p] \]

an \(SL_2(\mathbb{Z}/p)\)-cover, ramified at infinity

Construct \(\mathcal{O}(p)^{top}\) and \(Tmf(p) = R\Gamma \mathcal{O}(p)^{top}\)

Cusps: \(\coprod_{SL_2(\mathbb{Z}/p)/U} \text{Spf } \mathbb{Z}[[q^{1/p}]] \to \text{Spf } \mathbb{Z}[[q]]\)

\((U \cong C_p \text{ is the upper-triangular matrices})\)

\(K[[q^{1/p}]]\) has \(U\)-action \((\text{Cooke's obstruction theory})\)
Tmf and level structures

Derived stack $(\mathcal{M}, \mathcal{O}^{top}) \xrightarrow{f} \text{Spec } S$

(compactified moduli stack of elliptic curves)

$R\Gamma \mathcal{O}^{top} = Tmf$

$\mathcal{M}(p) \to \mathcal{M}[1/p]$

an $SL_2(\mathbb{Z}/p)$-cover, ramified at infinity

Construct $\mathcal{O}(p)^{top}$ and $Tmf(p) = R\Gamma \mathcal{O}(p)^{top}$

Cusps: \[\coprod_{SL_2(\mathbb{Z}/p)/U} \text{Spf } \mathbb{Z}[[q^{1/p}]] \to \text{Spf } \mathbb{Z}[[q]]\]

($U \cong C_p$ is the upper-triangular matrices)

$K[[q^{1/p}]]$ has U-action (Cooke's obstruction theory)

$\mathcal{O}(p)^{top}$ on the cusps is $SL_2(\mathbb{Z}/p)_+ \bigwedge U K[[q^{1/p}]]$
The construction implies Descent
Duality for $Tmf(p)$

The construction implies

Descent

\[Tmf[1/p] \simeq Tmf(p)^{hSL_2(\mathbb{Z}/p)} \]
The construction implies

\[
\text{Descent}
\]

\[Tmf[1/p] \simeq Tmf(p)^{h\text{SL}_2(\mathbb{Z}/p)}\]

For \(p = 2, p = 3\), \(M(p)\) is a weighted projective line
The construction implies

Descent

\[Tmf[1/p] \simeq Tmf(p)^{hSL_2(\mathbb{Z}/p)} \]

For \(p = 2, p = 3 \), \(\mathcal{M}(p) \) is a weighted projective line

Serre duality implies
Duality for $Tmf(p)$

The construction implies

Descent

\[Tmf[1/p] \simeq Tmf(p)^{hSL_2(\mathbb{Z}/p)} \]

For $p = 2, p = 3$, $\mathcal{M}(p)$ is a weighted projective line

Serre duality implies

Theorem (S.)

\[l_{\mathbb{Z}} Tmf(2) = \Sigma^9 Tmf(2) \quad l_{\mathbb{Z}} Tmf(3) = \Sigma^5 Tmf(3) \]
Theorem (S.)

The Tate spectra $Tmf(2)^{t\text{SL}_2(\mathbb{Z}/2)}$, $Tmf(3)^{t\text{SL}_2(\mathbb{Z}/3)}$ are contractible.
Theorem (S.)

The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain
Theorem (S.)

The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain

$$Tmf[1/p] \simeq (l_{\mathbb{Z}} Tmf(p))^{hSL_2(\mathbb{Z}/p)}$$
Theorem (S.)

The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain

$$Tmf[1/p] \simeq (I_{\mathbb{Z}} Tmf(p))^{hSL_2(\mathbb{Z}/p)}$$

Dual action is twisted
Theorem (S.)

The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain

$$Tmf[1/p] \simeq (I_{\mathbb{Z}} Tmf(p))^{hSL_2(\mathbb{Z}/p)}$$

Dual action is twisted \Rightarrow shift in homotopy fixed points.
The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain

$$Tmf[1/p] \simeq (l_{\mathbb{Z}}Tmf(p))^{hSL_2(\mathbb{Z}/p)}$$

Dual action is twisted \Rightarrow shift in homotopy fixed points.

The Anderson dual of Tmf is $\Sigma^{21} Tmf$.
Theorem (S.)

The Tate spectra $Tmf(2)^{tSL_2(\mathbb{Z}/2)}$, $Tmf(3)^{tSL_2(\mathbb{Z}/3)}$ are contractible.

Combined with descent, we obtain

$$Tmf[1/p] \simeq (l_{\mathbb{Z}} Tmf(p))^{hSL_2(\mathbb{Z}/p)}$$

Dual action is twisted \Rightarrow shift in homotopy fixed points.

Theorem (S.)

The Anderson dual of Tmf is $\Sigma^{21} Tmf$.

Sheafification: Indicates that $\Sigma^{21} O^{top}$ is a dualizing O^{top}-module, in contrast with the ordinary geometry.
Thank you!