Well-posed:

- **Existence**
 - (Obvious)
 - (Too few conditions ⇒ non-unique)

- **Uniqueness**
 - (Too many ⇒ non-exist.)

- **Stability**: Solution depends on data continuously. (Physically relevant)

Examples 1. Vibrating string with external force.

\[\begin{align*}
 u_{tt} - c^2 u_{xx} &= f(x,t) & \text{for } 0 < x < c &\text{ & } t > 0, \\
 u(x,0) &= \phi(x), & u_t(x,0) &= \psi(x), \\
 u(0,t) &= g(t), & u(c,t) &= h(t) .
\end{align*} \]

Existence: For arbitrary \(f, \phi, \psi, g, h \), \(\exists \, u = \text{solution} \).

Uniqueness: \(\equiv \).

Stability: \(f_1, \phi_1, \psi_1, g_1, h_1 \), \(\forall \, f_2, \phi_2, \psi_2, g_2, h_2 \Rightarrow u_1 \approx u_2 \).

Requires definition of "closeness"; topology.

Well-posed for appropriate closeness. (Later)

2. Diffusion

\[\begin{align*}
 u_{tt} - c^2 u_{xx} &= 0 & -\infty < x < \infty, \\
 u(x,0) &= f(x).
\end{align*} \]

Well-posed for \(t > 0 \), but not for \(t < 0 \)!

3. \(u_{xx} + u_{yy} = 0 \) for \(-\infty < x < \infty, 0 < y < \infty \)

\[\begin{align*}
 u(x,0) &= 0, \\
 u_y(x,0) &= e^{\sqrt{2}n} \sin \pi x & n \in \mathbb{Z}.
\end{align*} \]

\(\Rightarrow \, u_{n}(x) = \frac{1}{\sqrt{\pi}} e^{\sqrt{2}n} \sin \pi x \sin n y \) (Check!)

Data. \(u(x,0), \frac{\partial u}{\partial y} (x,0) \to 0 \) as \(n \to \infty \).

Solution \(u_n(x,y) \to 0 \) as \(n \to \infty \) for \(y > 0 \), not well-posed!