LINEAR SECOND-ORDER DEs WITH CONSTANT COEFFICIENTS.

(3) \[ay'' + by' + cy = 0 \]

\(a, b, c \) (REAL) CONSTANTS. \(a \neq 0 \).

ASSUME: (AND JUSTIFY LATER).

THE GENERAL SOLUTION OF (3) IS \(y = cy_1 + cy_2 \). \(c_1, c_2 \) ARBITRARY CONSTANTS.

\(y_1, y_2 \) INDEPENDENT SOLUTIONS \(\left(y_2 \neq t y_1, y_1 \neq t y_2 \right) \).

\(c_1, c_2 \) ARE CHOSEN TO SATISFY THE INITIAL CONDITIONS.

APPLICATION: SPRING-MASS-DASHPOT SYSTEM

\[mx'' = -kx - \gamma x' \]

\(x(t) = \) DISPLACEMENT OF MASS FROM EQUILIBRIUM \((x=0) \)

\(t = \) TIME.

NEWTON’S LAW OF MOTION \(mx'' = F = \) NET FORCE ACTING ON MASS \(m = \) MASS.

\(k = \) SPRING CONSTANT.

\(\gamma = \) DAMPING CONSTANT.

\[mx'' + \gamma x' + kx = 0 \]

HOW TO SOLVE (3)?

TRY \(y = e^{rt} \), \(r = \) PARAMETER, TO BE DETERMINED.

\(y = re^{rt} \), \(y' = re^{rt} \). (3) \(\Rightarrow a^2e^{rt} + b e^{rt} + ce^{rt} = 0 \).

\[e^{rt} \Rightarrow ar^2 + br + c = 0 \] CHARACTERISTIC EQUATION.
CASE 1. REAL & DIFFERENT ROOTS \(\lambda_1 \neq \lambda_2 \).

The general solution is
\[y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}. \]

Example: \(y'' + 4y' + 3y = 0 \), \(y(0) = 1 \), \(y'(0) = 0 \).

The characteristic equation is \(r^2 + 4r + 3 = 0 \), \(r = -3, -1 \).

The general solution is
\[y = C_1 e^{-3t} + C_2 e^{-t}. \]

Apply the initial conditions: \(C_1 + C_2 = 1 \), \(-3C_1 - C_2 = 0\) \(\Rightarrow C_1 = -1/2, C_2 = 3/2 \).

The solution is
\[y = -\frac{1}{2} e^{-3t} + \frac{3}{2} e^{-t}. \]

CASE 2. COMPLEX ROOTS \(\lambda = \alpha \pm i\beta \).

The two complex solutions are
\[y = e^{\alpha t}(C_1\cos \beta t + C_2 \sin \beta t). \]

But prefer to have real-valued solutions.

Theorem: If \(u + iv \) is a complex-valued solution of \(y'' + ay' + by = 0 \), then \(u \) and \(v \) are real-valued solutions.

Proof. \((u + iv)' + a(u + iv)' + b(u + iv) = 0 \)
\[(au'' + bu' + cu) + i(au' + bu' + cv) = 0. \]

\(e^{\alpha t}(\cos \beta t + i\sin \beta t) \) by Euler. \(\Rightarrow e^{\alpha t}\cos \beta t \text{ & } e^{\alpha t}\sin \beta t \) are real-valued solutions.

The general solution is
\[y = e^{\alpha t}(C_1\cos \beta t + C_2 \sin \beta t). \]

Example: \(y'' + 4y' + 3y = 0 \), \(y(0) = 1 \), \(y'(0) = 0 \).

Char. equation is \(r^2 + 4r + 3 = 0 \), \(r = -3, -1 \).

The general solution is
\[y = e^{-3t}(C_1 \cos t + C_2 \sin t). \]

Initial conditions \(C_1 = 1, C_2 = 0 \).
CASE B. ONE REPEATED ROOT \(\gamma \).

The characteristic equation must be

\[a(r-\gamma)^2 = 0, \quad ar^2 + 2ar\gamma + a\gamma^2 = 0. \]

The DE must be

\[ay'' - 2ar\gamma y' + a\gamma^2 y = 0. \]

One solution is \(y_1 = e^{\gamma t} \). Try \(y_2 = y_1 u \), \(u \) a function, to be determined.

\[y' = r e^{\gamma t} u + e^{\gamma t} u \]
\[y'' = r^2 e^{\gamma t} u + 2re^{\gamma t} u' + e^{\gamma t} u'' \]

\[\Rightarrow u \left(ar^2 e^{\gamma t} + 2ar\gamma e^{\gamma t} + a\gamma^2 e^{\gamma t} \right) + u' \left(2ar e^{\gamma t} - 2ar\gamma e^{\gamma t} + a\gamma^2 e^{\gamma t} \right) = 0. \]

\[u'' = 0, \quad u = C_1 + C_2 t. \] But just \(u = t \) will be enough.

The general solution is \(y = e^{\gamma t} (C_1 + C_2 t) \).

Example. \(y'' + 4y' + 4y = 0, \quad y(0) = 1, \quad y'(0) = 0. \)

Character equation \((r + 2)^2 = 0, \quad r = -2. \)

The general solution is \(y = e^{-2t} (C_1 + C_2 t) \).

Initial conditions \(\Rightarrow C_1 = 1, \quad C_2 = 0. \)

REMARKS ON CASE B.

1. \(e^{(a-i\beta)t} \) will generate two real solutions \(e^{at} \cos \beta t, -e^{at} \sin \beta t \), but it does not generate new solutions.

2. One may write the general solution \(y = c_1 e^{(a+i\beta)t} + c_2 e^{(a-i\beta)t}, \quad c_1, c_2 \) complex.

In order for \(y \) to be real, \(c_1 = \overline{c_2} \) because \(\overline{y} = \overline{c_1 e^{(a+i\beta)t} + c_2 e^{(a-i\beta)t}} \).

The (real) general solution is \(y = \overline{c} e^{(a+i\beta)t} + c e^{(a-i\beta)t} \), \(c \) arbitrary complex.

\[= C e^{(a+i\beta)t} + c. \]

3. This expression agrees with \(e^{at} (C_1 e^{i\beta t} + C_2 e^{-i\beta t}) \).

\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}. \]

Reading: (b) Section 3.1, 3.3, 3.4.