LINEAR VS. NONLINEAR

EXISTENCE & UNIQUENESS

LINEAR \(y' + py = g(x) \)

- Solution Procedure: Integrating Factor \(\mu = e^{\int p \, dt} \).
 \[
 (\mu y)' = \mu g, \quad y = \frac{\mu C \exp(-\int p \, dt) + \int \mu g \exp(-\int p \, dt) \, dt}{\mu}.
 \]

Consider the associated homogeneous equation \(y' + py = 0 \), separable. \(y = Ce^{-\int pt} = C \mu^t \).

- The general solution is \(y = y_c + yp \). \(y_c = C \mu^t \) is the general solution of \(y' + py = 0 \).

 \(y_p \) is a (particular) solution of \(y' + py = q \).

- Constant Coefficient Case. Consider \(y' + By = B e^{rt} \). \(A + r < 0 \), \(B \) constants.

 (Remark. Integrating Factor \(\mu = e^{\int B \, dt} \)).

 Try \(y_p(t) = Ae^{rt} \) for some constant \(A \) to be determined.

 \(\text{LHS} = A r e^{rt} + B A e^{rt} \), \(\text{RHS} = B e^{rt} \).

 \(A = \frac{B}{B r} \).

NONLINEAR \(y' = f(t, y) \).

- No General Solution Methods.

- A lot of integration, even if solvable.

- Graphical approach if interested in qualitative behavior.

SINGULARITIES = WHERE SOLUTIONS GO BAD?

LINEAR: As long as \(pg \) and \(g(x) \) are continuous and bounded, so are all solutions.

Example. \(y'' + 2y' + y = 0 \), \(y(1) = 2 \).

The solution is \(y(t) = e^t + \frac{1}{e} \).

The solution blows up at \(t = 0 \), where \(p(0) = \frac{2}{e} \) is not defined.

NONLINEAR cannot tell by looking at DE.

Example. \(y'' = -y^2 \), \(y(0) = 1 \).

The solution is \(y(t) = \frac{1}{1-t} \), exists only for \(0 < t < 1 \).

The solution blows up at \(t = 1 \).

But, the world is nonlinear!