PRELIMINARIES

Exponential Function \(y(t) = e^{kt} \) \(k = \text{constant} \).

Properties: (1) \(e^0 = 1 \).
(2) \(e^{kt + c} = e^c e^{kt} \)
(3) \(e^{kt} \) is never zero.
(4) If \(k > 0 \), \(\lim_{t \to \infty} e^{kt} = \infty \), \(\lim_{t \to -\infty} e^{kt} = 0 \).
If \(k < 0 \), \(\lim_{t \to \infty} e^{kt} = 0 \), \(\lim_{t \to -\infty} e^{kt} = \infty \).
(5) For any \(k > 0 \), \(e^{kt} \) grows much faster than any polynomial.

Examples \(\lim_{t \to 0} \frac{e^t}{t^3} = \infty \), \(\lim_{t \to \infty} te^{-t} = 0 \).

Graphs: \(k > 0 \)

\[
\begin{array}{c}
\text{Graph 1} \quad e^{kt} \\
\text{Graph 2} \quad e^{kt}
\end{array}
\]

You must be completely familiar with these!

Independent & Dependent Variables

Write a function \(y = x^2 + 2x + 3 \), \(x = \text{independent variable} \), \(y = \text{dependent variable} \).

A system of equations \[\begin{cases} x = t^2 - 1 & t = \text{independent variable} \\ y = 3e^t & x, y = \text{dependent variables} \end{cases} \]

A function of many variables \(x = st^2 - s \), \(s, t = \text{independent variables} \), \(x = \text{dependent variable} \).

A system of many variables \[\begin{cases} x = st^2 - s & s, t = \text{independent variables} \\ y = 3e^{st} & x, y = \text{dependent variables} \end{cases} \]

In ordinary differential equations, one independent & one dependent variable.
PARAMETERS

For example, \(\int t^2 \, dt = \frac{t^3}{3} + C \) \(\color{red}{\text{C = parameter. (= constant of integration).}} \)

We say \(y(t) = \frac{t^3}{3} + C \) is a 1-parameter family of functions.

NOTATIONS FOR DERIVATIVES

We write \(\frac{dy}{dt} \) or \(y' \) for the derivative of \(y \) w.r.t. \(t \).

\(\frac{d^2y}{dt^2} \) or \(y'' \) for the 2nd derivative.

\(\frac{d^n y}{dt^n} \) or \(y^{(n)} \) for the \(n \)th derivative.

DIFFERENTIAL EQUATIONS (DEs) RELATE BETWEEN A FUNCTION & ITS DERIVATIVES.

Examples. (1) \(y'' + 4y' + 3y = 0 \).

\(2) \sqrt{yy''} + (\cos t)e^{y''} + (y' y'')^3 = \sin t \).

The order of a DE is the order of the largest derivative appearing in it.

Examples. (1) is of 2nd order, (2) is of 5th order.

Solving a DE means finding a function that satisfies the equation, called a solution.

Fact of life: For many equations, hard or impossible!

Example 1. (Checking a Solution by Substitution).

\(y' = 3y \) \(y(t) = e^{3t} \) is a solution?

Solution. \(\text{LHS} = 3e^{3t} \), \(\text{RHS} = 3e^{3t} \). \(\therefore \) yes.

Example 2. (Rejecting a Solution by Substitution).

\(y' = y/t \) \(y(t) = t^3 \) is a solution?

Solution. \(\text{LHS} = 3t^2 \), \(\text{RHS} = t^2 \). \(\therefore \) no.
Des usually have more than 1 solutions, involving parameters.

Example. Find all solutions to $y'' = 0$. (This is a calculus problem.)

$y' = c_1$

$y = Ct + c_2$, c_1, c_2. Arbitrary constants = parameters.

Initial value problem = differential equation + initial conditions

Example (continued) $y'' = 0$ with $y(1) = 1 \in y'(1) = 2$.

The "general" solution is $y(t) = Ct + c_2$.

$y(1) = c_1 + c_2 = 1$. $y'(1) = c_1 = 2 \Rightarrow c_1 = 2$, $c_2 = -1$. $y(t) = 2t - 1$.

The most important DE $y' = ky$.

In words, rate of change in y or y'.

The solution is $y(t) = Ce^{kt}$, c any constant. (Check) Know it by heart!

It models exponential growth (when $k > 0$) or decay (when $k < 0$).

Read: (BD) Sections 1.2 & 1.3.