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For motivational background we first read two other papers:

Edgar & Miller, Borel subrings of the reals, PAMS 131 (2003) 1121–1129
Tao, The sum-product phenomenon in arbitrary rings, arXiv:0806.2497v5

Next we had talks on Hrushovski’s paper above. The notes below on sections
2 and 3 are a record of talks by Henson and myself, assume only rudimentary
knowledge of model theory, and give detailed proofs. If possible we choose
notations and formulations similar to those in Hrushovski’s paper. More to
follow. Needless to say, the source for all this is [3] to which we also refer
for references to other original papers and motivational comments. See also
Tao [4] for discussions around [3].

Let us fix some global notational conventions:

We let m,n range over N = {0, 1, 2, . . . }. Let X,Y be sets and R ⊆ X × Y
a relation. For a ∈ X, b ∈ Y we often write R(a, b) (or even aRb) to indicate
that (a, b) ∈ R. For a ∈ X we put

R(a) := {b ∈ Y : R(a, b)}.

We also let R̆ := {(b, a) ∈ Y × X : (a, b) ∈ R} be the reverse of R, so for
b ∈ Y we have R̆(b) = {a ∈ X : R(a, b)}. Unless specified otherwise, |X| is
the size (cardinality) of X.

1. Independence

This section corresponds to Section 2 in [3]. Its subsections are: Many-sorted
structures; The monster model ; Finite satisfiability ; A-invariant types; Di-
viding and forking ; Stable separation; Stable relations; The A-topology ;
Keisler measures; Ideals; Useful global types relative to an ideal.

Many-sorted structures. Let L be an S-sorted first-order language, so
an L-structure M = (M ; · · · ) has a family M = (Ms)s∈S of underlying
sets rather than a single underlying set. The set S of sorts is part of what
determines L, and we define the size |L| of L to be the cardinal

|L| := max{ℵ0, |set of nonlogical symbols of L|, |S|}.
For each sort s ∈ S we have variables of sort s that we think of as ranging
over the underlying set Ms, for any L-structure M as above.

Let M = (M ; · · · ) be an L-structure. Given a variable v of sort s, we put
Mv := Ms. An S-sorted multivariable is a family x = (xi)i∈I where each
xi is a variable of some sort si ∈ S, and xi and xj are different variables
(possibly of the same sort) whenever i 6= j; for such x we set

Mx :=
∏
i

Mxi (the x-set of M), |x| := |I| (size of x),
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and the elements a = (ai) ∈ Mx are also called x-tuples in M (of size |I|).
A parameter set (in M) is a family A = (As)s∈S with As ⊆Ms for all s ∈ S,
and has size |A| :=

∑
s |As|. Let A be a parameter set. For a variable v

of sort s ∈ S we set Av := As and for an S-sorted multivariable x = (xi)
we put Ax :=

∏
iAxi . We have the extended language L(A), and for any

S-sorted multivariable x we have the notion of an A-definable subset of Mx.
Instead of “M -definable” we also write just “definable” when the ambient
structure M is clear from the context. For definable X ⊆ Mx we let ¬X
be the complement of X in Mx, we let Def(X) be the boolean algebra of
definable subsets of X, and we let St(X) be the Stone space of this boolean
algebra, so the points of St(X) are the ultrafilters of Def(X).

Suppose A is a parameter set in M. If X ⊆ Mx is A-definable, then
Def(X|A) is the boolean algebra of its A-definable subsets, with Stone space
St(X|A). We also set Stx(A) := St(Mx|A), in particular, Stx(M) = St(Mx).
Points of any of these Stone spaces are often referred to as types.

For more on this many-sorted set-up, see Section 3 in [1], with definitions
of other basic notions such as partial elementary maps, automorphisms,
saturation, homogeneity, . . . .

The monster model.1 Throughout U = (U ; . . . ) is a big ambient L-
structure. Here “big” means that U comes equipped with a certain cardinal
κ(U) > |L| such that U is κ(U)-saturated and strongly κ(U)-homogeneous.
Given our ambient U, “small” means “of size < κ(U)”. We let x, y, z be
small disjoint S-sorted multivariables and A,B small parameter sets in U.
Also, M denotes the family (Ms) of underlying sets of a small elementary
submodel of U, which, abusing language, we also denote by M . Unless
we specify otherwise, “definability” is with respect to U. For A-definable
X ⊆ Ux and a ∈ X,

tpX(a|A) := {P ∈ Def(X|A) : a ∈ P} (the type of a over A),

and for X = Ux we drop subscript X in this notation or replace it x; note
that St(X|A) = {tpX(a|A) : a ∈ X}.

Let X ⊆ Ux (not necessarily definable). We set X(M) := X∩Mx, and we
say that X is A-invariant if σ(X) = X for all σ ∈ Aut(U|A). The following
are equivalent:

(1) X is A-invariant;
(2) X is a union of Aut(U|A)-orbits with respect to the usual action of

Aut(U|A) on Ux;
(3) X =

⋃
p∈E p(Ux) for some set E ⊆ Stx(A).

Let X ⊆ Ux be definable. A point in St(X) is often called a global type and
typically denoted by a bold face letter like p. Sometimes we want to think
of p as the set of L(U)-formulas φ(x) such that φ(X) ∈ p, and in this role

1The term “monster” does not refer here to pathology, but to being big. However,
finite structures are also “big” according to the definition of that term.
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as a set of formulas we denote p by p(x). Likewise for types in St(X|A) if
X is A-definable. For more on these matters, see Section 5 of [1].

Finite satisfiability. Let X ⊆ Ux. For an L(U)-formula φ(x) we put

φ(X) := {a ∈ X : |= φ(a)}.
Let Φ = Φ(x) be a set of L(U)-formulas φ(x). Then

Φ(X) := {a ∈ X : |= φ(a) for all φ ∈ Φ} =
⋂
φ∈Φ

φ(X).

We say that Φ is over A if it consists of L(A)-formulas. We say that Φ is
finitely satisfiable if ∆(Ux) 6= ∅ for all finite ∆ ⊆ Φ; if Φ is over A, this
is equivalent to Φ(Ux) 6= ∅. We say that Φ is finitely satisfiable in A if
∆(Ux) ∩ Ax 6= ∅ for all finite ∆ ⊆ Φ. We call Φ a partial type if Ux 6= ∅,
φ(Ux) 6= ∅ for all φ ∈ Φ, and φ1 ∧ φ2 ∈ Φ whenever φ1, φ2 in Φ; note that
then Φ is finitely satisfiable. A set X ⊆ Ux is said to meet A if X ∩Ax 6= ∅.

Here is a useful fact about finite satisfiability in a (small) model M :

Lemma 1.1. Suppose Φ(x) is finitely satisfiable in M . Then Φ(x) extends
to a global type in St(Ux) that is finitely satisfiable in M .

Proof. Let Ψ(x) be the set of all L(U)-formulas ψ(x) such that Mx ⊆ ψ(Ux).
Then Φ(x) ∪Ψ(x) is clearly finitely satisfiable (in M), and thus extends to
a global type p(x) ∈ St(Ux). Then p(x) is finitely satisfiable in M : if θ(x)
is an L(U)-formula and θ(Ux) ∩Mx = ∅, then ¬θ(x) ∈ Ψ(x) ⊆ p(x). �

A-invariant types. Let X ⊆ Ux be A-definable (and hence A-invariant).
Let p ∈ St(X) be a global type. We consider p both as an ultrafilter on
the boolean algebra Def(X), and thus as a collection of subsets of X, and
as the set p(x) of L(U)-formulas φ(x) such that φ(Ux) ∈ p. We say that p
is A-invariant if σ(P ) ∈ p for all σ ∈ Aut(U|A) and all sets P ∈ p. If p is
A-invariant, then it is B-invariant for all B ⊇ A. Note that p(x) is finitely
satisfiable in A iff every P ∈ p meets A.

Lemma 1.2. Suppose p is finitely satisfiable in A. Then p is A-invariant.

Proof. Let P ∈ p and σ(P ) /∈ p, σ ∈ Aut(U|A). Then P ∩ σ(¬P ) ∈ p, so
we can take a ∈ P ∩ σ(¬P ) ∩Ax, so a = σ(a) ∈ σ(P ), a contradiction. �

In particular, if Φ(x) is finitely satisfiable in M and φ(Ux) ⊆ X for all φ ∈ Φ,
then by Lemmas 1.1 and 1.2 it extends to a global type p(x) ∈ St(X) that
is finitely satisfiable in M and thus M -invariant.

Lemma 1.3. Let q ∈ St(Uy) be A-invariant and a, b ∈ Ux with tp(a|A) =
tp(b|A). Suppose c ∈ Uy realizes q �Aa and d ∈ Uy realizes q �Ab. Then
tp

(
a, c)|A

)
= tp

(
(b, d)|A

)
.

Proof. Let φ(u, x, y) be an L-formula, e ∈ Au. Then

|= φ(e, a, c) ⇔ φ(e, a, y) ∈ q(y) ⇔ φ(e, b, y) ∈ q(y) ⇔ |= φ(e, b, d).

�
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Lemma 1.4. Let q ∈ St(Uy) be A-invariant, and suppose (an) and (bn) are
sequences in Uy such that for all n,

an |= q�Aa0 . . . an−1, bn |= q�Ab0 . . . bn−1.

Then (an) ≡A (bn).

Proof. Note that tp(a0|A) = tp(b0|A) = q�A. Assume inductively that

tp((a0, . . . , an)|A) = tp((b0, . . . , bn)|A).

Since an+1 realizes q �Aa0 . . . an and bn+1 realizes q �Ab0 . . . bn, it follows
from the previous lemma that

tp((a0, . . . , an, an+1)|A) = tp((b0, . . . , bn, bn+1)|A).

�

With A-invariant q ∈ St(Uy), an easy recursion yields a sequence (an) such
that an |= q �Aa0 . . . an−1 for all n, and it follows easily from Lemma 1.4,
that each such sequence is indiscernible over A. We call such a sequence
q-indiscernible over A.

Dividing and forking. For n > 1, a collection C of subsets of a set P
is said to be n-disjoint if all sets in C are nonempty and for all distinct
X1, . . . , Xn ∈ C we have X1 ∩ · · · ∩Xn = ∅. A definable set X ⊆ Ux is said
to divide over A if X 6= ∅ and for some n > 1 there is an infinite n-disjoint
collection of A-conjugates of X. As often with model-theoretic notions, it is
“non-dividing” rather than “dividing” that is of most interest to us.

Lemma 1.5. Let φ(x, y) be an L(A)-formula, and suppose X = φ(Ux, b) is
nonempty, b ∈ Uy. Then X divides over A iff there is an A-indiscernible
sequence (bi)i∈N in Uy with b0 = b and

⋂
i φ(Ux, bi) = ∅.

Proof. Suppose X divides over A. Take n > 1 and an n-disjoint infinite
collection C of A-conjugates of X. For each Y ∈ C there is an A-conjugate
c of b such that Y = φ(Ux, c), so we have an infinite set C of A-conjugages
of b with a bijection c 7→ φ(Ux, c) : C → C. By Ramsey’s theorem and
saturation this yields an A-indiscernible sequence (ci)i∈N of A-conjugates of
b such that for all i1 < · · · < in in N we have

φ(Ux, ci1) ∩ · · · ∩ φ(Ux, cin) = ∅.
It remains to apply an A-automorphism of U that sends c0 to b.

For the converse, assume that (bi)i∈N is an A-indiscernible sequence in Uy

with b0 = b and
⋂
i φ(Ux, bi) = ∅. It follows easily that φ(Ux, b0) 6= φ(Ux, b1),

and thus φ(Ux, bi) 6= φ(Ux, bj) for all i 6= j. Also, by saturation there are
i1 < · · · < in in N with n > 1 such that

φ(Ux, bi1) ∩ · · · ∩ φ(Ux, bin) = ∅.
Hence φ(Ux, bj1) ∩ · · · ∩ φ(Ux, bjn) = ∅ for all j1 < · · · < jn in N, and thus
X divides over A. �
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A definable set P ⊆ Ux is said to fork over A if P 6= ∅ and there are definable
sets X1, . . . , Xn ⊆ Ux that divide over A such that n ≥ 1 and

P ⊆ X1 ∪ · · · ∪Xn.

So if a definable set P ⊆ Ux divides over A, then it forks over A. If a
definable set P ⊆ Ux meets A, then it doesn’t fork over A.

Let Φ be a collection of nonempty definable sets in Ux such that P∩Q ∈ Φ
for all P,Q ∈ Φ. We say that Φ divides over A if some set P ∈ Φ divides
over A, and we say that Φ forks over A if some set P ∈ Φ forks over A. So
if Φ divides over A, then it forks over A. Of course, these definitions also
apply to a partial type Φ(x) by taking Φ := {φ(Ux) : φ(x) ∈ Φ(x)}. If Φ
doesn’t divide over A, then it doesn’t divide over any B ⊇ A. If all sets in
Φ meet A, then Φ doesn’t fork over A.

Lemma 1.6. Let Φ be as above and let D be a (not necessarily small)
parameter set, and suppose the sets in Φ are D-definable and Φ does not
fork over A. Then Φ extends to some p ∈ Stx(D) that does not fork over A.

Proof. Let Ψ := {X ∈ Def(Ux|D) : X forks over A}. Suppose P ∈ Φ and
X1, . . . , Xn ∈ Ψ with n ≥ 1; we claim that then P ∩(¬X1)∩· · ·∩(¬Xn) 6= ∅.
Otherwise,

P ⊆ X1 ∪ · · · ∪Xn,

so P would fork over A. This proves the claim.
It follows that Φ extends to a type p ∈ Stx(D) that contains all ¬X with

X ∈ Ψ, and thus p does not fork over A. �

Lemma 1.7. Let M ⊇ A be κ-saturated where κ is an infinite cardinal
> |A|, and let p ∈ Stx(M). Then p divides over A iff p forks over A.

Proof. Suppose p forks over A. Take P ∈ p and definable sets X1, . . . , Xn ⊆
Ux that divide over A such that n ≥ 1 and P ⊆ X1 ∪ · · · ∪ Xn. Take a
finite tuple a in the model M such that P is Aa-definable. After applying
an automorphism of U over Aa we can arrange that all Xi are defined over
M , and then Xi ∈ p for some i. �

It is even simpler to show that, given a global type p ∈ St(Ux), we have:

p divides over A ⇐⇒ p forks over A.

Lemma 1.8. Let p ∈ Stx(A). Then p does not fork over A iff p has a global
extension p ∈ St(Ux) that does not fork over A.

Proof. If p does not fork over A, then a proof like that of Lemma 1.6 yields
a global extension p ∈ Stx(U) that doesn’t fork over A. The converse is
obvious. �

Note that if a global type p ∈ St(Ux) is A-invariant, then it doesn’t divide
over A, and hence doesn’t fork over A.
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Lemma 1.9. Let X ⊆ Ux and Y ⊆ Uy and f : X → Y all be A-definable.
Let a ∈ X, A ⊆ B, and suppose tpX(a|B) doesn’t fork over A. Then
tpY (f(a)|B) doesn’t fork over A.

Proof. Suppose towards a contradiction that f(a) ∈ P ∈ Def(Y |B) and P
forks over A. Then P ⊆ P1 ∪ · · · ∪ Pn where n ≥ 1 and where the definable
sets P1, . . . , Pn ⊆ Uy divide over A. By shrinking P and P1, . . . , Pn we can
arrange that P1, . . . , Pn ⊆ f(X). Then

a ∈ f−1(P ) ∈ Def(X|B), f−1(P ) ⊆ f−1(P1) ∪ · · · ∪ f−1(Pn),

and f−1(P1), . . . , f−1(Pn) divide over A, contradicting the assumption. �

Let Φ(x) be a finitely satisfiable set of L(U)-formulas in x, not necessarily
a partial type. Then Φ(x) generates a partial type [Φ(x)] consisting of
the conjunctions φ1(x)∧ · · · ∧ φn(x) with φ1, . . . , φn ∈ Φ. We say that Φ(x)
divides over A if [Φ(x)] divides over A. (If Φ(x) is already a partial type, this
agrees with the previous definition.) The following is an easy consequence
of Lemma 1.5.

Lemma 1.10. Let Φ(x, y) be a set of L(A)-formulas φ(x, y) and suppose
b ∈ Uy is such that Φ(x, b) is finitely satisfiable. Then Φ(x, b) divides over
A iff there is an A-indiscernible sequence (bn) in Uy with b0 = b such that⋃
n Φ(x, bn) is not finitely satisfiable.

Stable separation. Let Φ(x, y) and Ψ(x, y) be partial types over A, both
consisting of formulas φ(x, y). We say that Φ,Ψ is stably separated if there
is no A-indiscernible sequence {(an, bn)} in Ux,y = Ux×Uy such that for all
m,n:

m < n =⇒ |= Φ(am, bn), m > n =⇒ |= Ψ(am, bn).

By Ramsey’s theorem and compactness the following are equivalent:
(1) Φ,Ψ is stably separated;
(2) there is no sequence {(an, bn)} in Ux,y such that |= Φ(am, bn) for all

m < n and |= Ψ(am, bn) for all m > n;
(3) there is N ∈ N≥1 such that there are no (a0, b0), . . . , (aN , bN ) in Ux,y

with |= Φ(am, bn) for all m < n and |= Ψ(am, bn) for all m > n;
(4) there areN ∈ N≥1, φ ∈ Φ, ψ ∈ Ψ such that for all (a0, b0), . . . , (aN , bN )

in Ux,y, either |= ¬φ(am, bn) for some m < n, or |= ¬ψ(am, bn) for
some m > n.

The definition of “stably separated” mentions A, but by the equivalences
above Φ,Ψ being stably separated doesn’t depend on the choice of A such
that Φ and Ψ are over A. If Φ,Ψ is stably separated, then clearly Φ ∪ Ψ
is not finitely satisfiable, and Φ̆(y, x), Ψ̆(y, x) is also stably separated. It
follows from the equivalence with (3) that if Φ,Ψ is stably separated, so is
Ψ,Φ (symmetry).
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Let Φ(x, y),Ψ(x, y) be partial types over A as before, and let q ∈ Sty(U)
be A-invariant. Note that if p ∈ Stx(A), then either all a |= p(x) satisfy
Φ(a, y) ⊆ q(y), or all a |= p(x) satisfy Φ(a, y) 6⊆ q(y). We define:

Φ,Ψ is q-separated
:⇐⇒

for all (a, b) ∈ Ux,y, if Φ(a, y) ⊆ q(y), b |= q�A, and p(x) ∪Ψ(x, b) is

finitely satisfiable with p(x) := tp(a|A), then p(x) ∪Ψ(x, b) divides over A.

Lemma 1.11. Suppose Φ,Ψ is stably separated. Then Φ,Ψ is q-separated
(and thus by symmetry, Ψ,Φ is q-separated).

Proof. Let (a, b) ∈ Ux,y be such that Φ(a, y) ⊆ q(y), b |= q �A, and the set
p(x)∪Ψ(x, b) is finitely satisfiable where p(x) := tp(a|A). Our job is to show
that p(x)∪Ψ(x, b) divides over A. Suppose it doesn’t. Take a q-indiscernible
sequence (bn) in Uy with b0 = b. Then by Lemma 1.10 p(x) ∪

⋃
n Ψ(x, bn)

is finitely satisfiable. By Lemma 1.4 and subsequent remark we can choose
recursively elements a0, a1, · · · ∈ Ux and c0, c1, · · · ∈ Uy such that for all n,

(1) an |= p(x) ∪
⋃
m<n Ψ(x, cm);

(2) cn |= q�Aa0 . . . an−1c0 . . . cn−1.
To choose an for n > 0, keep in mind that the initial segment c0, c1, . . . , cn−1

begins an A-indiscernible sequence of the same type over A as (bi)i∈N. If
m > n, then by (1) we have |= Ψ(am, cn). If m < n, then by (1) we
have am |= p(x), so Φ(am, y) ⊆ q(y), and hence |= Φ(am, cn). Thus Ψ,Φ
is not stably separated, contradicting the assumption that Φ,Ψ is stably
separated. �

Stable relations. Let R ⊆ Ux×Uy = Ux,y in what follows. We say that the
relation R is stable over A if R is A-invariant and for all a, a′ ∈ Ux, b, b

′ ∈ Uy

with R(a, b) and ¬R(a′, b′), the pair tp((a, b)|A), tp((a′, b′)|A) of (x, y)-types
over A is stably separated. Note that if R is stable over A, so are ¬R and
R̆ ⊆ Uy × Ux, and R is stable over every B ⊇ A. It is also clear from this
definition that if I is any index set and Ri ⊆ Ux × Uy is stable over A for
all i ∈ I, then

⋃
iRi and

⋂
iRi are stable over A.

Lemma 1.12. Suppose R is A-invariant. Then the following are equivalent:
(1) R is not stable over A;
(2) there is an A-indiscernible sequence {(an, bn)} in Ux,y such that

R(am, bn) for all m < n and ¬R(am, bn) for all m > n.

Proof. Suppose {(an, bn)} is as in (2). Put a = a0, b = b1, a
′ = a1, b

′ = b0.
Then R(a, b) and ¬R(a′, b′), and {(an, bn)} witnesses that the pair

tp((a, b)|A), tp((a′, b′)|A)

is not stably separated, and so R is not stable. Conversely, let a, a′ ∈ Ux

and b, b′ ∈ Uy be such that R(a, b) and ¬R(a′, b′), and let {(an, bn)} be an
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A-indiscernible sequence in Ux,y witnessing that tp((a, b)|A), tp((a′, b′)|A)
is not stably separated. Then this sequence is as in (2). �

An immediate consequence of Lemma 1.12 is that if X ⊆ Ux and Y ⊆ Uy

are A-invariant, then X × Y is stable over A.

Lemma 1.13. Let p ∈ Stx(A), let q ∈ Sty(U) be A-invariant, and suppose
R is stable over A. Let a, a′ range over Ux and b, b′ over Uy.

(1) Assume R(a, b), a, a′ |= p(x), b |= q �Aa, b′ |= q �A and tp(a′|Ab′)
does not divide over A. Then R(a′, b′).

(2) Assume a, a′ |= p and b, b′ |= q � A, and the types tp(a|Ab) and
tp(a′|Ab′) do not divide over A. Then R(a, b) ⇐⇒ R(a′, b′).

Proof. For (1), put Φ(x, y) := tp((a, b)|A), Ψ(x, y) := tp((a′, b′)|A), so

Φ(a, y) = tp(b|Aa), Ψ(x, b′) = tp(a′|Ab′).
Suppose towards a contradiction that ¬R(a′, b′). Then the pair Φ,Ψ is stably
separated, so q-separated by Lemma 1.11. Now Φ(a, y) = tp(b|Aa) = q�Aa,
hence Φ(a, y) ⊆ q(y). Also,

p(x) = tp(a′|A) ⊆ Ψ(x, b′),

and hence p(x) ∪ Ψ(x, b′) is finitely satisfied. Therefore p(x) ∪ Ψ(x, b′) =
Ψ(x, b′) = tp(a′|Ab′) divides over A, contradicting the assumption in (1).

To prove (2), take c ∈ Uy such that c |= q �Aa. If R(a, c), then by (1)
applied to the pairs (a, c) and (a, b) we otain R(a, b), and (1) applied to
(a, c) and (a′, b′) gives R(a′, b′). If ¬R(a, c) we argue in the same way with
the stable relation ¬R to obtain ¬R(a, b) and ¬R(a′, b′). �

Lemma 1.14. Assume R is stable over M , let p ∈ Stx(M), q ∈ Sty(M),
and let (a, b) range over p(Ux)× q(Uy). Then the following are equivalent:

(i) R(a, b) for some (a, b) such that tp(a|Mb) does not divide over M ;
(ii) R(a, b) for all (a, b) such that tp(a|Mb) does not divide over M .
(iii) R(a, b) for some (a, b) such that tp(a|Mb) does not fork over M ;
(iv) R(a, b) for all (a, b) such that tp(a|Mb) does not fork over M .

These four conditions are also equivalent to each of the four conditions ob-
tained by replacing “tp(a|Mb)” with “tp(b|Ma)”.

Proof. By Lemma 1.1 we have a global M -invariant q ∈ Sty(U) that extends
q. Using q the implication (i) ⇒ (ii) follows from (2) of Lemma 1.13.

For the converse it is enough to produce (a, b) such that tp(a|Mb) does
not divide over M . Take a global M -invariant p ∈ Stx(U) that extends p,
so p doesn’t divide over M . Then for any b, p�Mb doesn’t divide over M ,
so if a realizes p�Mb, then tp(a|Mb) doesn’t divide over M .

This construction of a pair (a, b) works also with “fork” instead of “divide”
and thus produces a pair (a, b) such that tp(a|Mb) doesn’t fork over M , and
hence also doesn’t divide over M . This yields (ii) ⇒ (iii), and (iv)⇒ (iii).
The direction (iii) ⇒ (i) follows in view of “not forking” implying “not
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dividing”. The latter also gives (iv) ⇒ (ii). This proves the equivalence of
conditions (i)–(iv).

By symmetry considerations, the four conditions obtained from these by
replacing “tp(a|Mb)” with “tp(b|Ma)” are also pairwise equivalent; to show
they are equivalent to (i)–(iv) it is enough to have a pair (a, b) such that
tp(a|Mb) and tp(b|Ma) don’t divide over M . To get such a pair we use
Lemma 1.1 to obtain an M -invariant r ∈ Stx,y(U) that extends p ∪ q. Then
r doesn’t divide over M , so any (a, b) |= r �M has the desired property. �

Let q ∈ Sty(U), and a ∈ Ux. Then

(q�Aa)(Uy) = {b ∈ Uy : b |= q�Aa} 6= ∅.
Any two elements of (q�Aa)(U) are Aa-conjugate, so for A-invariant R,

(q�Aa)(Uy) ⊆ R(a) ⇐⇒ (q�Aa)(Uy) ∩R(a) 6= ∅.
It follows that if R is A-invariant and B ⊇ A, then

(q�Aa)(Uy) ⊆ R(a) ⇐⇒ (q�Ba)(Uy) ⊆ R(a).

In the rest of this subsection the multivariables x, y are similar.

Lemma 1.15. Suppose R is stable over M , q, r ∈ Sty(U) do not divide over
M , and q�M = r�M . Then for all a ∈ Ux = Uy,

(q�Ma)(Uy) ⊆ R(a) ⇐⇒ (r�Ma)(Uy) ⊆ R(a).

Proof. Let a ∈ Ux and suppose (q �Ma)(Uy) ⊆ R(a), that is, R(a, b) for
all b |= q �Ma. Put p := tpx(a|M), take an M -invariant p ∈ Stx(U) that
extends p. Take c |= q�Ma, so R(a, c) and tp(c|Ma) doesn’t divide over M .
Then Lemma 1.14 with q := q �M yields that R(a′, c) for all a′ |= p �Mc.
Taking such an a′ and noting that c |= r � M = q � M we can apply the
same lemma again to conclude that R(a, b) for all b |= r � Ma, that is,
(r�Ma)(Uy) ⊆ R(a). �

Let S = Snd
A,y be the set of global types q ∈ Sty(U) that do not divide over

A. We define an equivalence relation E on S by: q E r if and only if

for every R ⊆ Ux × Uy that is stable over A, and all a ∈ Uy,

(q�Aa)(Uy) ⊆R(a) ⇐⇒ (r�Aa)(Uy) ⊆ R(a).

Corollary 1.16. Suppose |A|, |y| ≤ |L|. Then |S/E| ≤ 2|L|.

Proof. Take M ⊇ A with |M | ≤ |L|. By Lemma 1.15 and the remarks
preceding this lemma, we have for all q, r ∈ S, if q�M = r�M , then q E r.
This yields the desired estimate since |Defx(U|M)| ≤ |L|. �

The A-topology. The A-definable subsets of Ux form a basis for a certain
topology on Ux, the A-topology. The A-open subsets of Ux are the unions
of A-definable subsets of Ux; instead of A-open one also uses the term

∨
-

definable over A. The A-closed subsets of Ux are the intersections of A-
definable subsets of Ux, equivalently, the sets Φ(Ux) ⊆ Ux, with Φ(x) a set of
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L(A)-formulas in x; instead of A-closed one also uses the terms
∧

-definable
over A and type-definable over A. The A-definable subsets of Ux are exactly
the A-clopen subsets of Ux, and Ux is compact (but usually not hausdorff)
in the A-topology. For related basic facts on type-definability, see [2]. One
use of A-closed sets (respectively, A-open sets) is the possibility of forming
inverse limits (respectively, direct limits); this is also a reason for allowing x
to be an infinite (but small) tuple of variables. A related viewpoint is that
A-open sets are like locally compact spaces, with A-definable and A-closed
sets more like compact spaces. Note that A-open and A-closed subsets of
Ux are A-invariant.

For use in the next section we prove here a general fact, Lemma 1.17, which
is implicit in Hrushovski’s proof of his stabilizer theorem 3.4 in [3]. First
some introductory remarks.

Let X ⊆ Ux be A-closed, and let (Xi)i∈I be a defining system for X over
A in the sense of [2], that is, I is small, Xi ∈ Def(Ux|A) for all i ∈ I, and
X =

⋂
iXi. Then for any small collection Φ(x) of formulas φ(x) over A,

Φ(X) =
⋂
i

Φ(Xi) =
⋂

i∈I, φ∈Φ

φ(Xi),

so Φ(X) is A-closed with defining system (φ(Xi))i∈I, φ∈Φ.
Assume also that p ∈ Stx(A). Then p(X) = ∅ or p(X) = p(Ux). This is

because p(X) ⊆ p(Ux), p(X) is an A-invariant subset of Ux, and p(Ux), as
an orbit, is a minimal nonempty A-invariant subset of Ux.

Lemma 1.17. Let X ⊆ Ux be M -closed and E an M -closed equivalence
relation on X such that X/E is small. Let p ∈ Stx(M) and p(X) 6= ∅. Then
p(X) ⊆ C for a (necessarily unique) E-class C ∈ X/E, and this class C is
M -closed.

Proof. Let (Xi), (Ei) be a directed defining system for X,E as defined in
[2]. Note that p(X) = p(Mx) by the remarks above. We extend p to an M -
invariant global type p ∈ St(Ux), and then take an elementary extension U′

of U where p is realized by an element a ∈ U′
x. This yields the definable sets

X ′
i ⊆ U′

x and E′
i ⊆ X ′

i ×X ′
i, the set X ′ =

⋂
iX

′
i ⊆ U′

x and the equivalence
relation E′ =

⋂
iE

′
i on X ′. If C ∈ X/E, then C ′ ∈ X ′/E′, and the map

C 7→ C ′ : X/E → X ′/E′

is a bijection (Lemma 3.4 of [2]). We have a ∈ p(U′
x) ⊆ p(U′

x). We claim that
p(U′

x) ⊆ X ′: to see this, note that for each i ∈ I we have p(Ux) = p(X) ⊆ Xi,
so we get φ(x) ∈ p(x) with φ(Ux) ⊆ Xi, hence p(U′

x) ⊆ φ(U′
x) ⊆ X ′

i. This
yields the claim. It follows that we have C ∈ X/E such that a ∈ C ′. Take
c ∈ C. For i ∈ I we have a ∈ C ′ ⊆ Ei(c)′, so Ei(c) ∈ p. On the other hand,
if d ∈ X and (c, d) /∈ E, then there is i such that Ei(c)∩Ei(d) = ∅ and thus
Ei(d) /∈ p. In this way p picks out a unique E-class, namely C. But p is
M -invariant, so C is M -invariant, and since C is type-definable (over Mc),
it follows that C is M -closed.
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Next we claim that p(Ux) ∩ Ei(c) 6= ∅ for all i. To see this, suppose
i ∈ I is such that p(Ux) ∩ Ei(c) = ∅. Then we have φ(x) ∈ p(x) such
that φ(Ux) ∩ Ei(c) = ∅, and since φ(Ux) ∈ p, this would give Ei(c) /∈ p, a
contradiction. This proves our claim, and since C =

⋂
iEi(c), compactness

yields p(Ux)∩C 6= ∅. Since p(Ux) is a minimal nonempty M -invariant subset
of Ux, this yields p(X) = p(Ux) ⊆ C. �

It will also be useful to extend some earlier constructions to A-open sets.

Let X ⊆ Ux be A-open. Then we define:

Def(X) :={P ⊆ X : P is definable},
Def(X|A) :={P ⊆ X : P is A-definable},

and for any a ∈ X and any parameter set D (not necessarily small),

tpX(a|D) :={P ∈ Def(X) : a ∈ P},
St(X|D) :={tpX(a|D) : a ∈ X},

in particular, tpX(a|A) := {P ∈ Def(X|A) : a ∈ P}. By an X-formula we
mean an L-formula φ(x, y) such that φ(Ux, b) ⊆ X for all b ∈ Uy (and thus
φ(Ux, b) = φ(X, b) for all b ∈ Uy). Because X is A-open, every P ∈ Def(X)
equals φ(Ux, b) for some X-formula φ(x, y) and some b ∈ Uy.

Keisler measures. Let X ⊆ Ux be A-open. A Keisler measure on X is a
finitely additive measure

µ : Def(X) → [0,∞] = R≥0 ∪ {∞}, (in particular, µ(∅) = 0)2.

Let µ : Def(X) → [0,∞] be a Keisler measure. Then we have for each
X-formula φ(x, y) the function

µφ : My → [0,∞], µφ(b) = µφ(X, b).

We say that µ is A-invariant if µ(P ) = µ(σP ) for all P ∈ Def(X) and
σ ∈ Aut(U|A), equivalently, for each X-formula φ(x, y) we have µφ(b) =
µφ(c) whenever b, c ∈ Uy are A-conjugate (and so µφ induces a function
µφ : Sty(A) → [0,∞] by µφ(tp(b|A)) := µφ(b) for b ∈ Uy). We say that µ
is A-definable (in U) if µ is A-invariant and each function µφ : Uy → [0,∞]
as above is A-continuous, equivalently, µ is A-invariant and each induced
function µφ : Sty(A) → [0,∞] is continuous.

Ideals. Let C be a collection of subsets of Ux. We say that C is A-invariant
if σP ∈ C for all P ∈ C and σ ∈ Aut(U|A). Note that then for every L-
formula φ(x, y) we have a unique set EC,φ ⊆ Sty(A) of types such that for
all b ∈ Uy,

φ(Ux, b) ∈ C ⇐⇒ tp(b|A) ∈ EC,φ,

and that this equivalence determines C in terms of the sets EC,φ. The col-
lections C we have in mind are ideals in Def(X) for A-open X.

2For A-definable X one can also impose µ(X) = 1.
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In the rest of this subsection X ⊆ Ux is A-open and I is an ideal of Def(X),
so I is a collection of definable subsets of X such that ∅ ∈ I, and for all
P,Q ∈ Def(X),

P,Q ∈ I =⇒ P ∪Q ∈ I, P ⊆ Q ∈ I =⇒ P ∈ I.

We say that I is proper if I 6= Def(X). (This notion is relative to the ambient
X: if Y ⊆ X is A-open, then Def(Y ) is an improper ideal of Def(Y ) but
can be proper as an ideal of Def(X).)

Examples. {P ∈ Def(X) : P forks over A} ∪ {∅}, is an A-invariant ideal
of Def(X), the forking ideal over A (in X). If µ is an A-invariant Keisler
measure on X, then

{P ∈ Def(X) : µ(P ) = 0}
is an A-invariant ideal of Def(X), called the zero ideal of µ, and is a proper
ideal if µ(P ) > 0 for some P ∈ Def(X).

We say that I is A-definable (respectively, A-closed, A-open) if for each
L-formula φ(x, y) the set {b ∈ Uy : φ(Ux, b) ∈ I} is A-definable (respec-
tively, A-closed, A-open). Note that if I is A-closed or A-open, then I is
A-invariant. If µ is an A-definable Keisler measure on X, then its zero ideal
is clearly A-closed.

Definition. I is S1 over A if I is A-invariant, and for every L-formula
φ(x, y) and A-indiscernible sequence (bn) in Uy, if φ(Ux, b0) ∈ Def(X) (and
thus φ(Ux, bn) ∈ Def(X) for all n), and φ(Ux, bm) ∩ φ(Ux, bn) ∈ I for all
m 6= n, then φ(Ux, bn) ∈ I for some n (and hence for all n).

For A-invariant I, the following are equivalent:
(1) I is S1 over A;
(2) for every A-definable relation R ⊆ X×Uy and every sequence (bn) in

Uy with R̆(bn) /∈ I for all n, there are m < n with R̆(bm)∩R̆(bn) /∈ I.
This equivalence follows as usual by Ramsey’s theorem and saturation.

The zero ideal of an A-invariant Keisler measure µ on X with µ(X) < ∞
is clearly S1. The forking ideal over A in X is contained in every S1-ideal
over A:

Lemma 1.18. Suppose I is S1 over A and P ∈ Def(X) forks over A. Then
P ∈ I.

Proof. We can reduce to the case that P divides over A. Suppose towards a
contradiction that P /∈ I. Take an L-formula φ(x, y) and b ∈ Uy such that
P = φ(Ux, b). Then by Lemma 1.5 we have an A-indiscernible sequence
(bn) in Uy with b0 = b and φ(Ux, b0) ∩ · · · ∩ φ(Ux, bn) = ∅ for some n ≥
1. Note that φ(Ux, bn) ∈ Def(X) for all n. Take m maximal such that
φ(Ux, b0) ∩ · · · ∩ φ(Ux, bm) /∈ I, and put

Pi := φ(Ux, b0) ∩ · · · ∩ φ(Ux, bm−1) ∩ φ(Ux, bm+i), i ∈ N.
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Then Pi /∈ I for all i and Pi ∩ Pj ∈ I for all i 6= j. The sequence

{(b0, . . . , bm−1, bm+i)}i∈N

is A-indiscernible and I is S1 over A, a contradiction. �

Lemma 1.19. Let X ⊆ Ux and Y ⊆ Uy be A-definable, let Z ⊆ Uz be
A-open and J an ideal of Def(Z) that is S1 over A. Let P ⊆ X × Z and
Q ⊆ Y × Z be A-definable, and define R ⊆ X × Y ⊆ Ux × Uy by

R(a, b) ⇐⇒ P (a) ∩Q(b) ∈ J.

Then R is stable over A.

Proof. It is clear that R is A-invariant. Let {(an, bn)} be an A-indiscernible
sequence in Ux,y with R(am, bn) for all m < n, so an ∈ X, bn ∈ Y for all
n. By Lemma 1.12 it suffices to show that then R(am, bn) for some m > n.
First, R(an, bn) for all n: otherwise, ¬R(an, bn) for all n, and so for Cn :=
P (an)∩Q(bn) we have Cn /∈ J for all n and Cm∩Cn ∈ J for all m 6= n, which
contradicts that J is S1 over A. Next, the sequence {(a2n, b2n, a2n+1, b2n+1)}
is alsoA-indiscernible, and so is {(cn, dn)} := {(a2n+1, b2n)}. SinceR(cm, dn)
for all m < n, the above gives R(cn, dn) for all n, that is, R(a2n+1, b2n) for
all n. �

A set P ⊆ X is said to be I-wide if P 6⊆ Y for all Y ∈ I. If P ∈ Def(X), then
P is I-wide iff P /∈ I. A partial type Φ(x) is said to be in X if φ(Ux) ⊆ X
for all φ ∈ Φ, and is said to be I-wide if Φ is in X and φ(Ux) is I-wide for
all φ ∈ Φ(x). If Φ(x) is a partial type in X over some B, then Φ is I-wide
iff Φ(X) is I-wide.

Lemma 1.20. Let P ∈ Def(X) and suppose the nonempty partial type Φ(x)
is in P and is I-wide. Then Φ extends to an I-wide global type p ∈ St(P ).

Proof. If Y ∈ I, Y ⊆ P and φ ∈ Φ, then (P \Y )∩φ(Ux) 6= ∅, since otherwise
φ(Ux) ⊆ Y . This gives p ∈ St(P ) extending Φ such that P \ Y ∈ p for all
Y ∈ I with Y ⊆ P ; such p is I-wide. �

Theorem 1.21. Let Z ⊆ Uz be A-open and J an ideal of Def(Z) that is
S1 over A. Let a ∈ Ux, b, b

′ ∈ Uy, c ∈ Z be such that tpZ(c|Aab) is J-
wide, tp(b|A) = tp(b′|A), tp(b|Aa) and tp(b′|Aa) do not divide over A, and
tp(a|A) extends to an A-invariant global type. Then there exists c′ ∈ Z such
that tpZ(c′|Aab′) is J-wide, and

tp((a, c′)|A) = tp((a, c)|A), tp((b′, c′)|A) = tp((b, c)|A).

Proof. Let P ⊆ Ux × Z and Q ⊆ Uy × Z be A-definable with P (a, c) and
Q(b, c). By compactness it is enough to find for any such P,Q an element
c′ ∈ Z such that P (a, c′), Q(b′, c′) and tpZ(c′|Aab′) is J-wide, that is, it
suffices to show that P (a) ∩Q(b′) /∈ J .

Let R ⊆ Ux × Uy be defined by R(d, e) ⇐⇒ P (d) ∩Q(e) ∈ J . Then R is
stable over A by Lemma 1.19. Also P (a)∩Q(b) ∈ tpZ(c|Aab) and tpZ(c|Aab)
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is J-wide, so ¬R(a, b). Hence by part (2) of Lemma 1.13 (interchanging the
roles of x, y), we obtain ¬R(a, b′), that is, P (a) ∩Q(b′) /∈ J , as desired. �

Useful global types relative to an ideal. Such types are provided by
the next three lemmas, in three slightly different situations. We continue to
assume that X ⊆ Ux is A-open and that I is an ideal of Def(X).

Lemma 1.22. Suppose A = M and I is proper and M -open. Then there is
a global type p ∈ St(X), finitely satisfiable in M , such that for all a, b ∈ X,
if a |= p�M and b |= p�Ma, then tpX(a|Mb) is I-wide.

Proof. Since I is proper, we have P ∈ Def(X) such that P \ Y 6= ∅ for
all Y ∈ I. This yields a type p ∈ St(X|M) such that P \ Y ∈ p for all
M -definable Y ∈ I. Then Lemma 1.1 yields a global type p ∈ St(X) that
extends p and is finitely satisfiable in M . Let a, b ∈ X with a |= p and
b |= p � Ma, and suppose towards a contradiction that tpX(a|Mb)(X) ⊆
Y ∈ I. Then by compactness we have an L(A)-formula φ(x, y) with x and
y similar, such that |= φ(a, b) and φ(X, b) ⊆ Y , and thus φ(X, b) ∈ I.
Now I is M -open, so we have an L(M)-formula θ(y) such that |= θ(b), and
φ(X, b′) ∈ I for all b′ ∈ θ(X). Since tpX(b|Ma) is finitely satisfiable in M
we get b′ ∈ θ(X)∩My such that |= φ(a, b′). Then φ(X, b′) is an M -definable
set in I, so X \ φ(X, b′) ∈ p and thus |= ¬φ(a, b′), a contradiction. �

The next lemma has some Fubini-type assumptions:

Lemma 1.23. Suppose A = M , L and M are countable, and I is M -
closed and proper. With y similar to x, assume also that J is an ideal of
Def(X2|M) such that for all M -definable P ⊆ X and R ⊆ X2,

(1) if P 2 ∈ J , then P ∈ I;
(2) if R(a) ∈ I for all a ∈ X with I-wide tp(a|M), then R, R̆ ∈ J .

Then there exists a global type p ∈ St(X), finitely satisfiable in M , such that
tpX(a|Mb) and tpX(b|Ma) are I-wide for all a |= p�M and b |= p�Ma.

Proof. We first construct a certain I-wide p ∈ St(X|M), and then extend it
to a global type p as required.

Claim 1. Let P ⊆ X and R1, R2, R3 ⊆ X2 be M -definable such that P /∈ I
and P 2 ⊆ R1 ∪ R2 ∪ R3. Then there is an M -definable Q ⊆ P with Q /∈ I
such that for all a, b ∈ Q,

(∗) R1(a) /∈ I or R̆2(b) /∈ I or R̆3(c) ⊇ Q for some c ∈ X(M).

Proof of Claim 1. Suppose P ∩ R̆3(c) /∈ I for some c ∈ X(M). Take such
c, put Q := P ∩ R̆3(c), and note that then the third option in (*) holds for
all a, b ∈ Q. So it remains to consider the case that P ∩ R̆3(c) ∈ I for all
c ∈ X(M). Now I is M -closed, so P ∩ R̆3(c) ∈ I for all c ∈ X. Hence
(P ×X) ∩R3 ∈ J , by (2).

If there is an M -definable Q ⊆ P with Q /∈ I such that R1(a) /∈ I for
all a ∈ Q, then the first option of (*) holds. So we can assume that for all
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M -definable Q ⊆ P with Q /∈ I there is a ∈ Q with R1(a) ∈ I. Now I is
M -closed, so for all a ∈ P , if tp(a|M) is I-wide, then R1(a) ∈ I. Hence by
(2) again we get (P ×X) ∩R1 ∈ J .

If there is an M -definable Q ⊆ P with Q /∈ I such that R̆2(b) /∈ I for all
b ∈ Q, then the second option of (*) holds. We now show that there are no
other possibilities: Assuming there is no such Q we obtain (X×P )∩R2 ∈ J
as before. The three sets we showed to be in J yield R1∪R2∪R3 ∈ J . Then
from P 2 ⊆ R1 ∪ R2 ∪ R3 we get P 2 ∈ J , so P ∈ I by (1), a contradiction.
This finishes the proof of Claim 1.

Claim 2. There is an I-wide p ∈ St(X|M) such that for all M -definable
R1, R2, R3 ⊆ X2, if p(X)2 ⊆ R1∪R2∪R3, then there exists Q ∈ p such that
(*) holds for all a, b ∈ Q.

To prove this we use that L andM are countable. Take an enumeration (Xn)
of Def(X|M) and an enumeration (Rn1, Rn2, Rn3) of Def(X2|M)3 in which
every (R1, R2, R3) ∈ Def(X2|M)3 occurs infinitely often. Choose recursively
a descending sequence P0 ⊇ P1 ⊇ P2 · · · in Def(X|M) \ I such that

(a) P2n ⊆ Xn or P2n ⊆ ¬Xn;
(b) if P 2

2n ⊆ Rn1∪Rn2∪Rn3, takeQ as in Claim 1 for P2n andRn1, Rn2, Rn3

in the role of P,R1, R2, R3, and set P2n+1 := Q.
It is easy to check that p = {P ∈ Def(X|M) : P ⊇ Pn for some n} satisfies
Claim 2.

Let p be as in Claim 2, and take a ∈ p(X). Let Γ(a) be the collection of
definable subsets of X consisting of the sets in p together with the following
sets for all M -definable R ⊆ X2:

(i) ¬R(a) if R(a) ∈ I;
(ii) ¬R(a) if R̆(a) ∈ I;
(iii) ¬R(a) if R̆(c) /∈ p for all c ∈ X(M).

Note: R̆(c) /∈ p for all c ∈ X(M) if and only if X(M) ⊆ ¬R(a).

Claim 3. Let X1, . . . , Xn ∈ Γ(a). Then X1 ∩ · · · ∩Xn 6= ∅.

To prove this, take P ∈ p and M -definable R1, R2, R3 ⊆ X2 such that

X1 ∩ · · · ∩Xn ⊇ P ∩ ¬R1(a) ∩ ¬R2(a) ∩ ¬R3(a),

with R1(a), R̆2(a) ∈ I, and R̆3(c) /∈ p for all c ∈ X(M). Suppose towards a
contradiction that X1 ∩ · · · ∩Xn = ∅. Then

P ⊆ R1(a) ∪R2(a) ∪R3(a),

so p(X) × P ⊆ R1 ∪ R2 ∪ R3 and thus p(X)2 ⊆ R1 ∪ R2 ∪ R3. Then by
Claim 2 we have R1(a) /∈ I or R̆2(a) /∈ I or R̆3(c) ∈ p for some c ∈ X(M),
a contradiction. This proves Claim 3.

Claim 4. Let X1, . . . , Xn ∈ Γ(a). Then X1 ∩ · · · ∩Xn ∩X(M) 6= ∅.
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Suppose towards a contradiction that X1 ∩ · · · ∩Xn ∩X(M) = ∅. As in the
proof of Claim 3 we get P ∈ p and M -definable R1, R2, R3 ⊆ X2 such that
R1(a), R̆2(a) ∈ I, and R̆3(c) /∈ p for all c ∈ X(M), and

P (M) ⊆ R1(a) ∪R2(a) ∪R3(a),

that is, X(M) ⊆ ¬R(a) for R ⊆ X2 defined by

R(b, c) ⇐⇒ P (c) and ¬R1(b, c) and ¬R2(b, c) and ¬R3(b, c).

Thus by (iii) we have ¬R(a) ∈ Γ(a), that is

¬P ∪R1(a) ∪R2(a) ∪R3(a) ∈ Γ(a),

contradicting P,¬R1(a),¬R2(a),¬R3(a) ∈ Γ(a) in view of Claim 3.

Thus Γ(a) extends by Claim 4 and Lemma 1.1 to a global type p ∈ St(X)
that is finitely satisfiable in M . Take b |= p �Ma. It is easy to check that
tpX(b|Ma) is I-wide because of (i).

It remains to show that tpX(a|Mb) is I-wide. Let P ∈ tpX(a|Mb). Then
a ∈ P = R(b) where R ⊆ X2 is M -definable. Towards a contradiction,
suppose that P ∈ I, that is, R(b) ∈ I. Now a and b both realize p = p�M ,
so they are M -conjugate, and thus R(a) ∈ I. Hence ¬R̆(a) ∈ p�Ma by (ii),
so b ∈ ¬R̆(a), contradicting a ∈ R(b). �

Lemma 1.24. Suppose L and A are countable, and I is proper and A-
invariant. Then there is a countable M ⊇ A and a global type p ∈ St(X),
finitely satisfiable in M , such that for all a, b ∈ X, if a |= p�M , b |= p�Ma,
then tpX(a|Mb) is I-wide.

Proof. Assume that Th(U) has definable Skolem functions and κ(U) > iω1 .
(After proving the lemma for this case we shall reduce the general case to
this special case.) For any B, let 〈B〉 be the substructure of U generated by
B; by definability of Skolem functions, this is a (small) elementary submodel
of U. Since I is proper, there is for each M an I-wide p ∈ St(X|M). Thus
by transfinite recursion we obtain a sequence (ai : i < iω1) in X such that
for each i, tpX(ai|〈A ∪ {aj : j < i}〉) is I-wide. A theorem of Morley
then yields an A-indiscernible sequence (ci)i<ω+2 in X such that for any n,
tp((c0, . . . , cn)|A) = tp((ai0 , . . . , ain)|A) for suitable i0 < · · · < in < iω1 . In
particular, tpX(cn|Ac0 . . . cn−1) is I-wide for all n.

Let F be a non-principal ultrafilter on N = ω and put

p := {P ∈ Def(X) : {n : cn ∈ P} ∈ F}.
Then p ∈ St(X), and p is finitely satisfiable in M := 〈A ∪ {ci : i < ω}〉.
Put a := cω+1 and b := cω. Then a |= p�M , b |= p�Ma, and tpX(a|Mb) is
I-wide. This finishes the proof under the assumptions introduced earlier.

To reduce the general case to this special case, expand U to Usk while
keeping the language countable and without introducing new sorts, such
that Th(Usk) has definable Skolem functions. We cannot expect Usk to be
big, so we take a big elementary extension U′ of Usk with κ(U′) > iω1 . If
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an L(U)-formula φ(x) defines P ⊆ Ux in U, we denote the subset of U′
x that

it defines in U′ by P ′. The A-open set X ⊆ Ux is likewise extended to an
A-open set X ′ ⊆ U′

x (with respect to the ambient U′) as follows:

if X =
⋃
j∈J

Xj , all Xj ∈ Def(Ux|A), then X ′ :=
⋃
j∈J

X ′
j .

Finally, let I ′ be the collection of all sets Q ⊆ (U′
x that are definable in

U′ and contained in P ′ for some P ∈ I. Then I ′ is a proper A-invariant
ideal of Def(X ′) (with respect to the ambient U′). It remains to apply the
result of the special case with U′, X ′, I ′ in the role of U, X, I, and restrict
suitably. �

2. The stabilizer

This section has subsections Generic sets, The stabilizer theorem, More on
the stabilizer theorem, Making measures definable, and An application. In
the last subsection An application we derive a result on subsets of groups in
the spirit of the sum-product phenomenon.

Throughout G is a (multiplicatively written) group with a distinguished
subset X such that 1G ∈ X. Put X1 := X∪X−1, so X ⊆ X1 and X1 = X−1

1 .
Let Xn be the set of products g1 · · · gn with g1, . . . , gn ∈ X1, so Xn ⊆ Xn+1,
and X̂ :=

⋃
nXn is the subgroup of G generated by X. The set

X∗ := XX−1X

will play a special role. For Y ⊆ G and subgroup H of G we put

Y/H := {yH : y ∈ Y } ⊆ G/H.

Generic sets. We begin with two general and elementary facts.

Lemma 2.1. Let Y ⊆ Xm and k ∈ N be such that Xm+1 is covered by k
left translates of Y . Then Xm+n is covered by kn+1 left translates of Y .

Proof. By induction on n. Let Xm+n ⊆
⋃
e∈E eY with E ⊆ G. Then

Xm+n+1 = Xm+nX1 ⊆
⋃
e∈E

eY X1.

It remains to use that Y X1 ⊆ Xm+1. �

Lemma 2.1 goes through with right translates instead of left translates.

Lemma 2.2. Let Y, Z ⊆ G and let E be a maximal subset of Z such that
eY ∩ fY = ∅ for all distinct e, f ∈ E. Then

Z ⊆
⋃
e∈E

eY Y −1.

Proof. Given g ∈ Z, the maximality of E gives e ∈ E such that gY ∩eY 6= ∅,
so ga = eb with a, b ∈ Y , and thus g ∈ eY Y −1. �
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In the rest of this subsection we work in U as before, and assume:
• κ(U) > 2ℵ0 and x is a finite3 multivariable.
• G ⊆ Ux is an A-definable group, that is, G is an A-definable subset

of Ux equipped with an A-definable group operation.
• X ⊆ G is A-definable. (Recall also that 1G ∈ X.)

Note that then each Xn is A-definable, so X̂ is A-open.

Suppose I is an ideal of Def(X̂). We define I to be left-invariant if gP ∈ I
for all P ∈ I and g ∈ X1 (so gP ∈ I for all P ∈ I and g ∈ X̂). Likewise I is
right-invariant if Pg ∈ I for all P ∈ I and g ∈ X1. We set

I−1 := {P−1 : P ∈ I}.

Then I−1 is an ideal of Def(X̂), (I−1)−1 = I, and I is left-invariant iff I−1

is right-invariant. For Y ∈ Def(X̂) we define I|Y := {P ∈ I : P ⊆ Y },
which is also an ideal of Def(X̂).

Lemma 2.3. Let I be an ideal of Def(X̂) such that I|X4 is S1 over A and
aX /∈ I for all a ∈ X3. Then every set Xn is covered by finitely many left
translates of XX−1.

Proof. Take a maximal E ⊆ X3 such that eX ∩ fX = ∅ for all distinct
e, f ∈ E. Then E is finite by the S1 assumption. Given a ∈ X3 we get e ∈ E
such that aX ∩ eX 6= ∅, and so a ∈ eXX−1. Thus X3 is covered by finitely
many left translates of XX−1 ⊆ X2. It remains to apply Lemma 2.1. �

A left-generic set is a set Y ∈ Def(X̂) such that every Z ∈ Def(X̂) is covered
by finitely many left translates gY with g ∈ X̂, equivalently, every set Xn

is covered by finitely many such translates. The notion of right-generic set
is defined accordingly. Note that a left-generic set cannot belong to any
left-invariant proper ideal of Def(X̂). Here is a partial converse:

Corollary 2.4. Suppose I is a left-invariant ideal of Def(X̂) that is S1 over
A, and let Y ∈ Def(X̂), Y /∈ I. Then Y Y −1 is left-generic.

Proof. It suffices to show that each Xn is covered by finitely many translates
eY Y −1 with e ∈ Xn. Let E be a maximal subset ofXn such that eY ∩fY = ∅
for all distinct e, f ∈ E. Since eY /∈ I for all e ∈ E, the assumption that I
is S1 over A yields that E is finite. Now apply Lemma 2.2. �

Recall from [2] that a subset of Ux is said to be countably definable if it is a
countable intersection of definable subsets of Ux. Suppose H is a countably
definable subgroup of G. Then by Lemma 4.5 of [2] we have H =

⋂
nHn for

a decreasing sequence (Hn) of definable subsets of G such that for all n,

H−1
n = Hn, Hn ⊇ Hn+1Hn+1.

Note that if H ⊆ X̂, then H ⊆ Xm for some m (by compactness) and for
such m we have Hn ⊆ Xm for all sufficiently large n, again by compactness.

3This is because we use a fact from [2] established there under this restriction.
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Lemma 2.5. Let H be a countably definable subgroup of X̂. Then:
(1) |X̂/H| ≤ 2ℵ0 iff every Y ∈ Def(X̂) containing H is left-generic.
(2) Suppose I is a left-invariant proper ideal of Def(X̂) and I is S1 over

A. Then |X̂/H| ≤ 2ℵ0 iff H is I-wide.

Proof. Take a sequence (Hn) as above with Hn ⊆ X̂ for all n. Let m and
n > 0 be such that Hn ⊆ Xm, and let E be a maximal subset of Xm such
that eHn ∩ fHn = ∅ for all distinct e, f ∈ E. By Lemma 2.2 we have
Xm ⊆

⋃
e∈E eHn−1. If E is infinite, then by saturation |E| > 2ℵ0 .

After these preliminary remarks, we first prove (1). If |X̂/H| ≤ 2ℵ0 , then
by these remarks any E as above is finite, and so by increasing m and n we
see that all Hn are left-generic, and thus every Y ∈ Def(X̂) containing H is
left-generic.

Next, suppose that |X̂/H| > 2ℵ0 . Take F ⊆ X̂ with |F | > 2ℵ0 such
that eH 6= fH for all distinct e, f ∈ F . We can arrange that for a certain
m we have F ⊆ Xm. For any distinct e, f ∈ F we have n = n(e, f) ∈ N
such that eHn ∩ fHn = ∅. By Erdös-Rado, we get an infinite F ′ ⊆ F such
that n(e, f) takes a constant value n for distinct e, f ∈ F ′. Increasing m if
necessary we can assume that Hn ⊆ Xm. Suppose towards a contradiction
that Hn is left-generic. Then F ′ ⊆ Xm ⊆ e1Hn ∪ · · · ∪ ekHn with k ∈ N
and e1, . . . , ek ∈ X̂, so we get i ∈ {1, . . . , k} and distinct e, f ∈ F ′ such that
e = eig and f = eih with g, h ∈ Hn, and thus eg−1 = fh−1 ∈ eHn ∩ fHn, a
contradiction. This finishes the proof of (1).

We now prove (2). If H ⊆ P ∈ I, then Hn ⊆ P for some n, and such Hn

is not left-generic, so |X̂/H| > 2ℵ0 by (1). Conversely, assume |X̂/H| > 2ℵ0 .
Then (1) gives n such that Hn is not left-generic, so H−1

n+1Hn+1 is not left-
generic, and thus H ⊆ Hn+1 ∈ I by Corollary 2.4. �

With an eye towards applying this lemma we note that if L and A are
countable, then every A-closed subgroup of G is countably definable.

Assuming that an ideal I of Def(X̂) is both left-invariant and S1 over
some A may be too strong for some applications. In such cases it might be
enough that the restriction of the ideal to X∗ := XX−1X satisfies S1. To
be precise, let I be an ideal of Def(X̂). Put

I∗ := I|X∗ = {P ∈ I : P ⊆ X∗}.

Then I∗ is an ideal of Def(X̂), and if I is A-invariant, so is I∗. If P ⊆ X∗,
then P is I-wide iff P is I∗-wide. If I is S1 over A, so is I∗ (and being S1 is
more realistic for I∗ than for I). Note: X,X−1 ⊆ X−1X ⊆ X∗ ⊆ X3.

The stabilizer theorem. The next theorem is a key result. It constructs a
useful type-definable group from rather generic data. We follow Hrushovski
in denoting this group by S. (This abuses our notation since S also names
the set of sorts of our language L, but the context will prevent confusion.)
The reason for using the letter S is that in more special settings this group
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is a stabilizer. (Maybe also in our setting for some natural action?) In this
subsection we keep the assumptions on U, G,X from the previous subsection.
Note that the theorem below refers to a (small) base model M ⊇ A, and
that its hypotheses include M -invariance of I∗ but not of I.

Theorem 2.6. Let I be a left-and-right-invariant ideal of Def(X̂) such that
I∗ is S1 over M ⊇ A. Let q ∈ St(X|M) be I-wide and assume there exist
a, b ∈ [q] := q(X) such that neither tp(b|Ma) nor tp(a|Mb) forks over M .

Then S := [q]−1[q][q]−1[q] ⊆ X−1XX−1X has the following properties:

(1) S is an M -closed subgroup of X̂ and S is I-wide;
(2) aS = [q][q]−1[q] for all a ∈ [q];
(3) there is no M -closed proper subgroup T of S such that S/T is small;
(4) S ⊆ (X−1X) ∪ P for some M -definable P ∈ I.

Proof. For sets Y ⊆ Uy and Z ⊆ Uz we put

Y ×nf Z := {(a, b) ∈ Y × Z : tp(b|Ma) does not fork over M}.

Next we introduce M -invariant subsets Q and Q′ of X−1X ⊆ X∗:

Q :={a−1b : (a, b) ∈ [q]×nf [q]},
Q′ :={a−1b : a, b ∈ [q], tpX(b|Ma) is I-wide}.

We have Q ⊇ Q′ by Lemma 1.18, and [q][q]−1 is I-wide by right-invariance,
and [q]−1[q] is I-wide by left-invariance. Note also that we have a type
q−1 ∈ St(X−1|M) such that [q]−1 = q−1(X−1). Throughout the proof we
use that by Lemma 1.19 the relation R ⊆ X4 ×X4 given by

R(a, b) ⇐⇒ [q]a−1 ∩ [q]b−1 is I∗-wide,

is stable over M . (Note: any subset of X̂ not contained in X∗ is I∗-wide.)
By Lemma 1.14 and R̆ = R, given any types p, p′ ∈ St(X4|M), the following
are equivalent:

(i) R(a, b) for some (a, b) ∈ p(X4)×nf p
′(X4);

(ii) R(a, b) for all such (a, b);
(iii) R(a, b) for some (a, b) ∈ p′(X4)×nf p(X4);
(iv) R(a, b) for all such (a, b).

It follows in particular that if Y, Z ⊆ X4 are M -invariant and R(a, b) for all
(a, b) ∈ Y ×nf Z, then also R(a, b) for all (a, b) ∈ Z ×nf Y .

Claim 1. [q]−1[q] ⊆ QQ.

To prove this, let a, b ∈ [q]. The assumption on q gives c ∈ [q] such that
neither tp(a|Mc) nor tp(c|Ma) forks over M . Use Lemma 1.6 to extend
tp(c|Ma) to a p ∈ St(Ux|Mab) that doesn’t fork over M ; upon replacing
c by an element of p(Ux) we arrange that tp(c|Mab) doesn’t fork over M .
Then (b, c), (c, a) ∈ [q]×nf [q], so b−1c, c−1a ∈ Q, and thus b−1a ∈ QQ.

Claim 2. R(a, b) for all (a, b) ∈ [q]×nf [q].
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By the remarks on R preceding Claim 1 it is enough to show that R(a, b)
for some (a, b) ∈ [q]×nf [q]. By the remark following the proof of Lemma 1.2
we can extend q to an M -invariant global type q ∈ St(X). Take a q-
indiscernible sequence (an) over M . Then (am, an) ∈ [q]×nf [q] for all m < n.
For P ∈ q we have P /∈ I, so Pa−1

n /∈ I∗ for all n; since I∗ is S1 over M we
get m < n such that Pa−1

m ∩ Pa−1
n /∈ I∗, and thus Pa−1

0 ∩ Pa−1
1 /∈ I∗. This

holds for all P ∈ q, so [q]a−1
0 ∩ [q]a−1

1 is I∗-wide, that is, R(a0, a1).

Claim 3. R(c, c′) for all (c, c′) ∈ [q]−1[q]×nf Q
′.

Let (c, c′) ∈ [q]−1[q] ×nf Q
′, and p := tp(c|M) and p′ := tp(c′|M). As

before it is enough to show that R(d, d′) for some (d, d′) ∈ p(X∗)×nf p
′(X∗).

Let a0 ∈ [q], and take a1 ∈ [q] such that tp(a−1
0 a1|M) = tp(c|M) = p.

From c′ ∈ Q′ we get a′2 ∈ [q] such that tp(a−1
0 a′2|M) = tp(c′|M) = p′ and

r := tpX(a′2|Ma0) is I-wide. Extend r to an I-wide r′ ∈ St(X|Ma0a1) and
take a2 ∈ r′(X) ⊆ q(X) = [q]. Then tpX(a2|Ma0) = r = tpX(a′2|Ma0), so

tp(a−1
0 a1|M) = p, tp(a−1

0 a2|M) = tp(a−1
0 a′2|M) = p′.

Since tpX(a2|Ma0a1) = r′ is I∗-wide, it doesn’t fork over M by Lemma 1.18,
and so tp(a2|Ma1) doesn’t fork over M . Then [q]a−1

1 ∩ [q]a−1
2 is I∗-wide by

Claim 2, so [q]a−1
1 a0 ∩ [q]a−1

2 a0 is I∗-wide by right-invariance, and thus
R(a−1

0 a1, a
−1
0 a2).

Claim 4. R(c, d) for all (c, d) ∈ [q]−1[q]×nf Q.

To prove this, let (c, d) ∈ [q]−1[q] ×nf Q. Then d = a−1b where a, b ∈ [q]
and tp(b|Ma) doesn’t fork over M . We wish to show R(c, a−1b), which
by right-invariance is equivalent to R(ac, b). Since tpX(b|M) = q is I∗-
wide, Lemma 1.20 provides b′ ∈ [q] such that tpX(b′|M) = tpX(b|M) and
tpX(b′|Mac) is I∗-wide. Then it follows from Lemma 1.18 that tp(b′|M(ac))
doesn’t fork over M .4 By the remarks preceding Claim 1 it suffices to
show that R(ac, b′), equivalently, R(c, a−1b′). Now tpX(b′|Ma) is I-wide,
so a−1b′ ∈ Q′. Left-invariance gives that tpX∗(a−1b′|Mac) is I∗-wide, so
tpX∗(a−1b′|Mc) is I∗-wide, and thus tp(a−1b′|Mc) doesn’t fork over M .
Now Claim 3 yields R(c, a−1b′), as desired.

Claim 5. Let (b, a) ∈ Q×nf [q]−1[q]. Then [q]a∩ [q]b−1 is I∗-wide and (thus)
ab ∈ [q]−1[q].

To see this, note that (b, a−1) ∈ Q×nf [q]−1[q], and thus R(b, a−1) by Claim
4 and the symmetry property of R mentioned just before Claim 1. Hence
[q]b−1 ∩ [q]a is I∗-wide, and so we can take c, d ∈ [q] with cb−1 = da, and
thus ab = d−1c ∈ [q]−1[q].

4Here we distinguish Mac, the parameter set obtained by adjoining a and c to M , from
M(ac), the parameter set obtained by adjoining the product ac to M .
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Claim 6. Let a ∈ [q]−1[q] and b1, . . . , bn ∈ Q, n ≥ 1, and suppose that
the type tpX∗(a|Mb1 . . . bn) is I-wide. Then ab1 · · · bn ∈ [q]−1[q], and the set
[q]a ∩ [q](b1 · · · bn)−1 is I-wide.

We prove this by induction on n. Since tpX∗(a|Mb1) is I∗-wide, tp(a|Mb1)
doesn’t fork over M by Lemma 1.18, and so by Claim 5,

ab1 ∈ [q]−1[q], [q]a ∩ [q]b−1
1 is I-wide.

This gives the case n = 1. Let n > 1. Since tpX∗(a|Mb1 . . . bn) is I-wide and
ab1 ∈ X∗, right-invariance yields that tpX∗(ab1|Mb1 . . . bn) is I-wide, and
therefore tpX∗(ab1|Mb2 . . . bn) is I-wide. Then by the inductive assumption,

ab1(b2 · · · bn) ∈ [q]−1[q] and [q]ab1 ∩ [q](b2 · · · bn)−1 is I-wide.

Then [q]a ∩ [q](b1 · · · bn)−1 is I-wide by right-invariance.

To get property (2) we also need a variant of Claim 6:

Claim 7. Let a ∈ [q]−1[q] and b1, . . . , bn ∈ Q, n ≥ 1, and suppose that the
type tpX∗(a−1|Mb1 . . . bn) is I-wide. Then ab1 · · · bn ∈ [q]−1[q], and the set
[q]a ∩ [q](b1 · · · bn)−1 is I-wide.

As in the proof of Claim 6 we obtain that tp(a−1|Mb1) and thus tp(a|Mb1)
doesn’t fork over M , and so by Claim 5,

ab1 ∈ [q]−1[q], [q]a ∩ [q]b−1
1 is I-wide.

For n > 1 we note that tpX∗
(
(ab1)−1|Mb1 . . . bn

)
is I-wide by left-invariance.

Now proceed inductively as in the proof of Claim 6.

Claim 8. Let n ≥ 1. Then {b1 · · · bn : b1, . . . , bn ∈ Q} ⊆ [q]−1[q][q]−1[q].

Let b1, . . . , bn ∈ Q. Now [q]−1[q] ⊆ X∗ is I-wide, so Lemma 1.20 provides an
I-wide p ∈ St(X∗|Mb1 . . . bn) with p(X∗) ⊆ [q]−1[q]. Take any a ∈ p(X∗).
Then a ∈ [q]−1[q] and tpX∗(a|Mb1 . . . bn) is I-wide, hence ab1 · · · bn ∈ [q]−1[q]
by Claim 6, so

b1 · · · bn = a−1(ab1 · · · bn) ∈ [q]−1[q][q]−1[q].

Claims 1 and 8 yield that S := [q]−1[q][q]−1[q] is indeed a subgroup of X̂.
Clearly S is M -closed, S ⊆ X4 ⊆ X̂, and S ⊇ [q]−1[q], so S is I-wide. Note:

S ⊆ X−1XX−1X = X−1X∗.

Claim 9. aS = [q][q]−1[q] for all a ∈ [q]. To prove this, let a ∈ [q],
and note that [q]−1[q] ⊆ S gives [q] ⊆ aS, so [q][q]−1[q] ⊆ aS. For the
reverse inclusion, let b ∈ aS, so b = ab1b2b3b4 with b1, b2, b3, b4 ∈ Q by
Claim 1. Take d ∈ [q] such that tpX∗(d|Mab1 . . . b4) is I-wide, and set e :=
d−1a. Then a = de and tpX∗(e−1|Mab1 . . . b4) is I-wide by left-invariance, so
tpX∗(e−1|Mb1 . . . b4) is I-wide. Now e ∈ [q]−1[q], hence eb1 · · · b4 ∈ [q]−1[q]
by Claim 7, so

b = ab1 · · · b4 = d(eb1 · · · b4) ∈ [q][q]−1[q].
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Claim 10. Let T be an M -closed subgroup of S such that |S/T | < κ(U).
Then S = T .

In the proof of Claim 9 we observed that [q] is contained in a single left coset
of S in X̂. This left coset equals [q]S, and is therefore M -closed. We have
T acting on [q]S by multiplication on the right, and this action has only a
small number of orbits aT with a ∈ [q]S. Then by Lemma 1.17 we have
[q] ⊆ aT where a ∈ [q], and thus [q]−1[q] ⊆ T , which gives S = T .

Claim 11. There exists c ∈ Q such that tpX∗(c|M) is I-wide.

To prove this claim, take a ∈ [q] and use Lemma 1.20 to extend q to an
I-wide type p ∈ St(X|Ma). Next, take b ∈ p(X), so tpX(b|Ma) = p, and
c := a−1b ∈ Q′ ⊆ Q. Then tpX∗(c|Ma) is I-wide by left-invariance, and so
tpX∗(c|M) is I-wide.

Claim 12. S \ [q]−1[q] is contained in a union of M -definable sets in I.

To prove this, note first that the set S \ [q]−1[q] ⊆ Y := X−1X∗ is M -
invariant, and thus a union of sets r(Y ) with r ∈ St(Y |M). So let any
I-wide r ∈ St(Y |M) with r(Y ) ⊆ S be given; it suffices to show that then

r(Y ) ⊆ [q]−1[q] (equivalently, r(Y ) ∩ [q]−1[q] 6= ∅).

Pick s0 ∈ r(Y ), so s−1
0 ∈ S ⊆ QQQQ, hence s−1

0 = b1b2b3b4 with the bi ∈ Q.
Claim 11 and Lemma 1.20 yield c ∈ Q such that tpX∗(c|Mb1b2b3b4) is I-
wide. Hence tp(c|Mb1b2b3b4) doesn’t fork over M , and so tp(c|Ms0) doesn’t
fork over M . Since c ∈ [q]−1[q], Claim 6 gives that [q]c ∩ [q]s0 is I-wide.

Pick a ∈ [q]. Since r is I-wide, Lemma 1.20 yields s ∈ r(Y ) ⊆ S such that
tpY (s|Mac) is I-wide. Then as ∈ X∗ by Claim 9, and tpX∗(as|Mac) is I-
wide by left-invariance, hence tp(as|Mac) doesn’t fork overM by Lemma 1.18,
so tp(s|Mac) doesn’t fork over M , and thus tp(s|Mc) doesn’t fork over M .
Therefore [q]c ∩ [q]s is I-wide as well, by remarks on R preceding Claim
1, and thus sc−1 ∈ [q]−1[q]. Now tpY (s|Mc) is I-wide, so tpX∗(sc−1|Mc)
is I-wide by right-invariance, so tp(sc−1|Mc) doesn’t fork over M . Hence
(c, sc−1) ∈ Q×nf [q]−1[q], and so by Claim 5 we have s = (sc−1)c ∈ [q]−1[q],
and thus r(Y ) ⊆ [q]−1[q].

Claim 13. S ⊆ (X−1X) ∪ P for some M -definable P ∈ I: “almost all”
elements of S are in X−1X.

This is because by Claim 12 we have

S ⊆ [q]−1[q] ∪
⋃
λ∈Λ

Pλ ⊆ (X−1X) ∪
⋃
λ∈Λ

Pλ

where all Pλ are M -definable and in I. Now use compactness of the M -
topology to get a single P . �
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Given M ⊇ A, the hypotheses on (X, I, q) in Theorem 2.6 are inherited by
(X−1, I−1, q−1), and so we have an I−1-wide M -closed subgroup

S′ := [q][q]−1[q][q]−1

of X̂. Under a mild countability assumption (to be eliminated when time
permits) we have S = S′ and S is a normal subgroup of X̂:

Corollary 2.7. Assume X, I, q are as in Theorem 2.6, and L,M are count-
able. Then S = S′, S E X̂, and |X̂/S| ≤ 2ℵ0.

Proof. We proceed by establishing three more claims.

Claim 14. |X/S| ≤ 2ℵ0 . Suppose otherwise. Then we have E ⊆ X with
|E| > 2ℵ0 such that eS 6= fS for all distinct e, f ∈ E. Take b ∈ [q]. Then
b−1[q] ⊆ S, so eb−1[q]∩ fb−1[q] = ∅ for all distinct e, f ∈ E. By Erdös-Rado
used as in the proof of Lemma 2.5 we get infinite F ⊆ E and a definable
Y ⊆ X with [q] ⊆ Y such that eb−1Y ∩ fb−1Y = ∅ for all distinct e, f ∈ F .
Since Y /∈ I, this contradicts I∗ being S1 over M .

In the rest of the proof we assume a ∈ X.

Claim 15. aSa−1 is M -closed. To prove this, let r := tp(a|M), so that
r(Ux) is contained in the union of the small number of left cosets of S in
G that meet X. Then it follows from Lemma 1.17 that r(Ux) is contained
in a single such coset, which must equal aS and must be M -closed. Hence
Sr := aS · S · (aS)−1 = aSa−1 is M -closed.

Claim 16. |X−1a/S| ≤ 2ℵ0 . Suppose otherwise. Then we have E ⊆ X
with |E| > 2ℵ0 such that e−1aS 6= f−1aS for all distinct e, f ∈ E. Take
b ∈ [q]. Then [q]−1b ⊆ S, so for all distinct e, f ∈ E we have

e−1a[q]−1b ∩ f−1a[q]−1b = ∅, and thus e−1a[q]−1 ∩ f−1a[q]−1 = ∅.

By Erdös-Rado this yields an infinite F ⊆ E and a definable Y ⊆ X with
[q] ⊆ Y such that for all distinct e, f ∈ F we have e−1aY −1 ∩ f−1aY −1 = ∅,
and thus Y a−1e ∩ Y a−1f = ∅. Since Y /∈ I and Y ⊆ X, this contradicts I∗

being S1 over M .

It follows that |[q]−1a/S| ≤ 2ℵ0 , and so

|[q]−1/aSa−1| = |a[q]−1/aSa−1| = |a([q]−1a)a−1/aSa−1|

= |[q]a/S| ≤ 2ℵ0 .

But aSa−1 is M -closed, so [q]−1 is contained in a single left coset of aSa−1,
hence [q][q]−1 ⊆ aSa−1, and thus S′ ⊆ aSa−1, in particular, for a = 1 this
gives S′ ⊆ S, and then by symmetry, S = S′, and thus S ⊆ aSa−1. Also by
symmetry, S ⊆ a−1S′a, so S ⊆ a−1Sa, and thus S = aSa−1. This holds for
all a ∈ X, so S is normal in X̂. Claim 14, together with Claim 16 for a = 1,
then gives |X̂/S| ≤ 2ℵ0 . �
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Theorem 2.6 and Corollary 2.7 together are the stabilizer theorem.

More on the stabilizer theorem. We keep the assumptions on U, G,X
from previous subsections. The next result is useful in realizing some hy-
potheses in the stabilizer theorem. In particular, Lemmas 1.22, 1.23, 1.24
help in finding a type q as required in Theorem 2.6:

Lemma 2.8. Let I be an ideal of Def(X̂).
(1) Suppose I is M -open, X /∈ I, and I∗ is S1 over M . Then there is

an I-wide q ∈ St(X|M) with a, b ∈ q(X) such that tp(a|Mb) and
tp(b|Ma) don’t fork over M .

(2) Suppose L and A are countable, X /∈ I, and I∗ is S1 over A. Then
there exists a countable M ⊇ A and an I-wide q ∈ St(X|M) with
a, b ∈ q(X) such that tp(a|Mb) and tp(b|Ma) don’t fork over M .

Proof. Let I be as in (1). By restricting I to X, Lemma 1.22 gives a global
type q ∈ St(X), finitely satisfiable in M , such that tpX(a|Mb) is I-wide
whenever a, b ∈ X satisfy a |= q � M and b |= q � Ma. Take such a, b ∈ X,
and put q := q � M . Then q ⊆ tpX(a|Mb), so q is I-wide. Using the
S1-assumption it follows from Lemma 1.18 that tp(a|Mb) doesn’t fork over
M . Since tp(b|Ma) ⊆ q and q is M -invariant, tp(b|Ma) doesn’t fork over
M .

Next, let I be as in (2). By restricting I to X, Lemma 1.24 gives a
countableM ⊇ A and a global type q ∈ St(X), finitely satisfiable inM , such
that tpX(a|Mb) is I-wide whenever a, b ∈ X satisfy a |= p�M , b |= p�Ma.
Taking such a, b ∈ X and setting q := q � M , we obtain as in the proof of
(1) that q is I-wide and tp(a|Mb) and tp(b|Ma) don’t fork over M . �

Next we show how the left-invariance and right-invariance conditions in the
stabilizer theorem can be weakened.

Corollary 2.9. Let M ⊇ A be fixed, and let (X, I, q) be as in Theorem 2.6,
except that the requirement of left-and-right invariance of I is replaced by:

(left) for all P ∈ Def(X3) and a ∈ X1: P ∈ I =⇒ aP ∈ I;
(right) for all P ∈ Def(X3) and a ∈ X1: P ∈ I =⇒ Pa ∈ I.
Then S := [q]−1[q][q]−1[q] satisfies the conclusions of Theorem 2.6. Also,
the above assumptions on (X, I, q) are inherited by (X−1, I−1, q−1), and so
yield the subgroup S′ := [q][q]−1[q][q]−1 of X̂. If L and M are countable,
then the conclusions of Corollary 2.7 go through.

Proof. These (left) and (right) conditions can be weakened further, as shown
in what follows, but this would complicate their statements. We first take
a look at how right-invariance was used in proving Theorem 2.6, and show
that weaker froms of right-invariance suffice.

Right-invariance. In the proof of Theorem 2.6 we can replace right-invariance
of I by the following consequences of it:
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(1) for all P ∈ Def(X) and a ∈ X−1X: P ∈ I ⇐⇒ Pa ∈ I.
(2) for all P ∈ Def(X−1X) and a ∈ X−1X: P ∈ I =⇒ Pa ∈ I.

Indeed, (1) can replace right-invariance as used in:
(i) showing [q][q]−1 is I-wide;
(ii) the proofs of Claims 2, 3, 4;
(iii) proving Claim 6 (second use) and Claim 7 (corresponding use).

As an example we show how to do this in proving Claim 4, where we have
a, b ∈ X and c ∈ X−1X, and want to get R(c, a−1b) ⇔ R(ac, b), that is,

[q]c−1 ∩ [q]b−1a is I-wide ⇐⇒ [q]c−1a−1 ∩ [q]b−1 is I-wide.

For this it is enough that for all P ∈ Def(X) we have

Pc−1 ∩ Pb−1a ∈ I ⇐⇒ Pc−1a−1 ∩ Pb−1 ∈ I.
Let P ∈ Def(X). Then Pc−1a−1 ∩ Pb−1 = P0b

−1 with P0 ∈ Def(X), and
then Pc−1 ∩ Pb−1a = P0b

−1a. Assuming (1), it follows that both sides in
the last display are equivalent to P0 ∈ I, and thus equivalent to each other.

We now show that (2) is enough to replace right-invariance in the proof
of Claim 12. In that proof tpY (s|Mc) is I-wide. Assume (2); we wish to
derive that tpX∗(sc−1|Mc) is I-wide. Suppose the latter is not I-wide. Since
sc−1 ∈ X−1X ⊆ X∗ we get Mc-definable P ⊆ X−1X such that sc−1 ∈ P
and P ∈ I. Then Pc ∈ tpY (s|Mc), and Pc ∈ I (since c ∈ X−1X), a
contradiction.

The first use of right-invariance in the proof of Claim 6 can also be taken
care of in this way, and here the following weaker form of (2) suffices: for
all P ∈ Def(X−1X) and a ∈ X−1X: P ∈ I, Pa ⊆ X−1X =⇒ Pa ∈ I.
Note that (1) and (2) are both consequences of the condition (right). We
now consider how left-invariance of I has been used.

Left-invariance. The proof of Theorem 2.6 uses only the following weak
forms of left-invariance of I:

(3) for all P ∈ Def(X) and a ∈ X, P /∈ I =⇒ a−1P /∈ I;
(4) for all P ∈ Def(X−1X) and a ∈ X−1X,

P ∈ I, aP ⊆ X−1X =⇒ aP ∈ I;
(5) for all P ∈ Def(X∗) and a ∈ X, P ∈ I =⇒ a−1P ∈ I.

Indeed, (3) suffices to replace the use of left-invariance in showing that
[q]−1[q] is I-wide and in proving Claims 4, 8, and 10. Left-invariance as
used in the proof of Claim 7 can be replaced by (4). Left-invariance as used
in the proof of Claim 12 can be replaced by (5). Note that (3), (4), (5) are
consequences of the condition (left).

This takes care of any kind of translation invariance of I as used in the proof
of Theorem 2.6.

Translation invariance of I as used in showing that S′ has properties like
those claimed of S in Theorem 2.6, with X−1, q−1, I−1 instead of X, I, q,
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can be replaced by the left versions of (1) and (2), and the right versions
of (3), (4), (5). The left version of (1) is also enough to replace the use of
left-invariance in the proof of Claim 14, and the use of right-invariance in
the proof of Claim 16 is taken care of by (1). All these weaker versions of
translation invariance of I are implied by (left)∧(right). �

Note that in the proof of Theorem 2.6 only Claim 12 seems to require the
stronger forms of translation invariance given by (2) and (5).

We call X a near-subgroup of G over A if there is an ideal I on Def(X̂) such
that I|X∗ and I|(X∗)−1 are S1 over A, X /∈ I, and for all P ∈ Def(X3)
and a ∈ X1: P ∈ I ⇐⇒ aP ∈ I ⇐⇒ Pa ∈ I. (This requirement
of translation invariance appears to be slighly stronger than the condition
(left)∧(right) of Corollary 2.9.) The following is a variant of Lemma 2.3

Corollary 2.10. Let X be a near-subgroup of G over A with countable L
and A. Then both XX−1 and X−1X are left-generic and right-generic.

Proof. Take an ideal I as in the definition of near-subgroup. By Lemma 2.8
we have a countable M ⊇ A and a type q such that (X, I, q) satisfies the
hypotheses of Corollary 2.9. Pick a ∈ [q] and set S = S′ := a[q]−1[q][q]−1,
an M -closed I-wide normal subgroup of X̂ with |X̂/S| ≤ 2ℵ0 . For X−1X
to be left-generic it suffices by part (1) of Lemma 2.5 that S can be covered
by finitely many left translates of X−1X. Take a maximal E ⊆ [q]−1[q][q]−1

such that eX ∩ fX = ∅ for all distinct e, f ∈ E. Then

a−1S = Sa−1 = [q]−1[q][q]−1 ⊆
⋃
e∈E

eX−1X,

soX−1X is indeed left-generic if E is finite. Suppose towards a contradiction
that E is infinite. Then |E| > 2ℵ0 , and we have e[q]∩f [q] = ∅ for all distinct
e, f ∈ E. For e ∈ E we have e[q] ⊆ S, so

e[q]a−1 ⊆ Sa−1 = [q]−1[q][q]−1 ⊆ X−1XX−1.

Via Erdös-Rado we obtain infinite F ⊆ E and P ∈ Def(X) with [q] ⊆ P
such that ePa−1 ⊆ X−1XX−1 for all e ∈ F , and ePa−1 ∩ fPa−1 = ∅ for all
distinct e, f ∈ F . In particular, P /∈ I, and for e ∈ F we have ePa−1 ⊆ X3,
so ePa−1 /∈ I by several applications of the translation invariance required
of a near-subgroup. As ePa−1 ∩ fPa−1 = ∅ for all e ∈ F , this contradicts
the assumption that I|X−1XX−1 is S1.

Thus X−1X is indeed left-generic, and since X−1X is symmetric, it is
also right-generic. Using (X−1, I−1, q−1) instead of (X, I, q), we obtain that
XX−1 is left-generic and right-generic. �

Making measures definable. In a big model, the zero ideal of an A-
invariant Keisler measure µ on an A-definable set Y with µ(Y ) < ∞ is S1
over A, as was mentioned earlier. Here we indicate a first-order setting from
which such Keisler measures emerge in a definable way. This will be used at
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the end of this section. In this subsection the language L is one-sorted , with
a fixed countably infinite supply of variables. (This restriction simplifies
definitions and is enough for the applications in these notes.)

We single out one particular variable x. We extend L to a (still one-sorted)
language pL by a recursive clause that assigns to each pL-formula

φ = φ(x; y) with y = (y1, . . . , yn)

and rational r > 0 an n-ary relation symbol prφ. One way to interpret
these new symbols is as follows. Let M = (M ; . . . ) be an L-structure (not
necessarily small) and F a nonempty finite subset of M . Then M has a
unique pL-expansion M[F ] such that for each φ = φ(x; y) and r as above

M[F ] |= prφ(b) ⇐⇒ |φ(M ; b)| < r|F | (b ∈Mn).

The pL-sentences in (i)–(v) below are clearly true in such pL-structures
M[F ]. In (i)–(v) we let r, s, t range over Q>0, and φ, ψ over pL-formulas
with free variables as indicated, with y = (y1, . . . , yn) and z = (z1, . . . , zp)
disjoint tuples of distinct variables, all distinct from x.

(i) the universal closure ∀y∀zθ(y, z) of each formula θ(y, z) of the form

[prψ(y) ∧ ∀x
(
φ(x; y) → ψ(x; z))] → psφ(z) (r < s);

(ii) the sentences prφ, for the formula φ(x) = ⊥ defining ∅ ⊆M ;
(iii) the universal closure of prφ(y) → psφ(y), for φ = φ(x; y) and r < s;
(iv) the universal closure of each formula

[prφ(y) ∧ psψ(y) ∧ ¬∃x(φ(x; y) ∧ ψ(x; y))] → ptΦ(y)

for Φ(x; y) := φ(x; y) ∨ ψ(x; y) and r + s < t;
(v) the universal closure of each formula

[¬prφ(y) ∧ ¬psψ(y) ∧ ¬∃x(φ(x, y) ∧ ψ(x, y))] → ¬ptΦ(y)

for Φ as in (vi) and r + s > t;

Let p̄L be the set of pL-sentences described in (i)–(v) above. It depends
only on L. Let M = (M ; . . . ) be an L-structure and pM a pL-expansion
of M such that pM |= p̄L. To distinguish definability with respect to M
and pM, we introduce some notation: if Y ⊆Mn is definable in M we put

Def(Y ) := {P ⊆ Y : P is definable in M},
and if Y ⊆Mn is definable in pM we put

pDef(Y ) := {P ⊆ Y : P is definable in pM}.
Then we have a finitely additive measure 5 µ : pDef(M) → [0,∞] such that
for φ = φ(x; y) as before,

µ
(
φ(M ; b)

)
= inf{r ∈ Q>0 : pM |= prφ(b)} (b ∈Mn).

5This includes the requirement µ(∅) = 0.
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Thus for φ(x; y) as before and b ∈Mn, s ∈ R≥0,

µ
(
φ(M ; b)

)
= s ⇐⇒ pM |= ¬prφ(b) for all r ∈ Q>0 with r < s, and

pM |= ptφ(b) for all t ∈ Q>0 with s < t.

It follows that for φ(x; y) as above and s ∈ R≥0 the set

{b ∈Mn : µ
(
φ(M ; b)

)
= s}

is countably definable over ∅ in pM (that is, an intersection of countably
many subsets of Mm that are 0-definable in pM). This fact plays a role for
big pM, and we now turn to this case.

Suppose that pM is big. Then the induced finitely additive measure µ on
pDef(M) is clearly a 0-invariant Keisler measure. Therefore, if Y ⊆ M is
A-definable in pM and µ(Y ) <∞, then the zero ideal

I := {P ∈ pDef(Y ) : µ(P ) = 0}

of the restriction of µ to pDef(Y ) is S1 over A.

An application. Recall that G denotes a group and X a subset of G
containing the group identity. For a ∈ G we put

aX := {x−1ax : x ∈ X}.

Theorem 2.11. Let k, l,m ∈ N≥1 be given. Then there is an n ≥ 1 such
that for any G,X with finite X and |X∗| ≤ k|X|, if there is no D ⊆ X−1X
with |D| ≥ |X|/n and |aX1 · · · aXl | < |X|/m for all (a1, . . . , al) ∈ Dl, then
there is a normal subgroup H of X̂ such that H ⊆ a−1X∗ for some a ∈ X,
and X ⊆

⋃km
i=1 aiH for some a1, . . . , akm ∈ X.

The explicit bound km for the number of cosets of H enough to cover X
was noticed by Henson. As to the proof of Theorem 2.11, if there is no
n as claimed, then there is a sequence of counterexamples with n tending
to infinity. This suggests working in a nonstandard G with a hyperfinite X
such that |X∗| ≤ k|X| and there is no internal D ⊆ X−1X such that |D|/|X|
is not infinitesimal, and |aX1 · · · aXl | < |X|/m for all (a1, . . . , al) ∈ Dl. Using
the internal counting measure µ on G normalized such that µ(X) = 1, and
taking its zero ideal restricted to X̂ we can then try to apply the stabilizer
theorem to get an H as required.

What we do below can be viewed in that way, but we prefer to avoid the
formalism of non-standard analysis, and aim instead for a result that is more
general in not being tied to counting measures, and in a more constructive
spirit in showing that n can be taken as a recursive function of (k, l,m).

To describe this result, let L be the one-sorted language of groups with an
extra unary predicate symbol X. We construe pairs (G,X) as L-structures
in the obvious way.
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Proposition 2.12. Let p(G,X) be a pL-expansion of a pair (G,X) such
that p(G,X) |= p̄L, and let µ be the induced measure on pDef(G). Suppose
µ(X) = 1, and µ(P ) = µ(gP ) = µ(Pg) for all P ⊆ G definable in (G,X)
and all g ∈ G. Let k, l,m ∈ N≥1, and suppose µ(X∗) ≤ k and there is no
D ⊆ X−1X definable in p(G,X) with µ(D) > 0 and µ(aX1 · · · aXl ) < 1/m
for all (a1, . . . , al) ∈ Dl.

Then there is a normal subgroup H of X̂, definable in p(G,X), such that
H ⊆ a−1X∗ for some a ∈ X and X ⊆

⋃km
i=1 aiH for some a1, . . . , akm ∈ X.

Proof. We can assume that p(G,X) is big. Consider the set

Q := {(a1, . . . , al) ∈ (X−1X)l : µ(aX1 · · · aXl ) ≥ 1/m}.
Note that Q = Φ(Gl) for some countable set Φ of pL-formulas φ(y1, . . . , yl)
where Φ is independent of p(G,X). The complement (X−1X)l \Q is sparse:
it has no subset Dl with D ⊆ X−1X definable in p(G,X) and µ(D) > 0.

Let I be the restriction to X̂ of the zero ideal of µ, so I is left-and-right-
invariant, I|X∗ is S1 over ∅, and X /∈ I. Then by the stabilizer theorem
and Lemma 2.8 we obtain a countable M � p(G,X) and a normal I-wide
subgroup H of X̂ that is countably definable over M in p(G,X), such that
H ⊆ a−1X∗ for some a ∈ X and

H ⊆ (X−1X) ∪ Y with Y ∈ I.
To get H definable in p(G,X), it suffices to show that its relative comple-
ment X4 \H is also type-definable.

Let (Hn) be a descending sequence of subsets of G, each definable in
p(G,X), such that H =

⋂
nHn. Since H ⊆ (X−1X) ∪ Y we can arrange

that Hn ⊆ (X−1X) ∪ Y for all n. Now for all n we have µ(Hn) > 0, so
µ(Hn ∩ X−1X) > 0, and so H l

n ∩ Q 6= ∅. Therefore H l ∩ Q 6= ∅, say,
(a1, . . . , al) ∈ H l ∩ Q, so µ(aX1 · · · aXl ) ≥ 1/m. Since H is normal in X̂, we
have aX1 · · · aXl ⊆ H. If b ∈ X, then bH ⊆ X∗ ∪ bY with µ(bY ) = 0, so at
most km cosets of H can meet X, that is, |X/H| ≤ km. In particular, X/H
is finite, and so X4/H is finite as well. Then X4 \ H is a union of finitely
many sets of the form X4 ∩ aH with a ∈ X4, so X4 \ H is type-definable,
and so H is definable. �

Let now k, l,m ∈ N≥1 given. It is easy to specify an infinite set Hyp(k, l,m)
of pL-sentences, including all sentences of p̄L, such that (with the present
values of k, l,m) the hypothesis of Proposition 2.12 can be expressed as:

p(G,X) |= Hyp(k, l,m).

Likewise, one can specify an infinite set Con(k, l,m) of pL-sentences such
that the the conclusion of Proposition 2.12 can be expressed as:

p(G,X) |= σ for some σ ∈ Con(k, l,m).

Of course, these sets Hyp(k, l,m) and Con(k, l,m) should depend only on
k, l,m, not on p(G,X). (To express normality, use that a subgroup of X̂ is
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normal in X̂ iff it is normalized by each x ∈ X.) Compactness gives finite
sets ∆ ⊆ Hyp(k, l,m) and Σ ⊆ Con(k, l,m) such that∧

δ∈∆

δ −→
∨
σ∈Σ

σ

is a logical truth. This yields in particular a number n = n(k, l,m) ≥ 1 such
that Proposition 2.12 holds with “µ(D) > 0” replaced by “µ(D) ≥ 1/n”. In
the situation of Theorem 2.11 we take the counting measure on G normalized
so thatX has measure 1 to obtain the validity of this theorem with the above
n = n(k, l,m).
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