HW 6, due Monday, March 4: problems 1 and 5 on p. 68 of the book. (For Friday, March 1, problem 1, (i)-(vii) on p. 56 and 4 on p. 63, but don’t hand in.)

Solution of 1, p. 68. Note that here \(N \) is our \(N = \{0, 1, 2, \ldots\} \), and that in our notation system the similarity type is \(\langle -, 2, 2, 1, 0 \rangle \), since we regard constants as nullary functions. To make things more readable we let \(+, -, S, 0\) also denote the function symbols of the language \(L \) that name the operations on \(N \) that are usually written with those symbols, and we use infix notation: \(t_1 + t_2 \) and \(t_1 t_2 \), rather than the official prefix notation: \(+(t_1, t_2) \) and \(\cdot(t_1, t_2) \); we also drop parentheses whenever it is clear from the context where they should be inserted in the official notation.

(i) \((2 + 2) + 1, (2 + 2) + (1 + 0), 2 + (2 + 1), (2 + 1) + 2, \) and \(SSSS0 \) are 5 distinct closed \(L \)-terms \(t \) with \(t^N = 5 \).

(ii) By induction on \(n \). For \(n = 0 \) the term 0 does the job. Assume the closed \(L \)-term \(t \) is such that \(t^N = n \). Then \(S(t) \) is a closed \(L \)-term such that \(S(t)^N = n + 1 \).

(iii) Use (ii) and the fact that if \(t \) is a closed \(L \)-term with \(t^N = n \), then \(t + 0 \) is also a closed \(L \)-term with \((t + 0)^N = n \), and \(t + 0 \) has greater length (as a word on the alphabet \(L \)) than \(t \).

Solution of 5, p. 68. Take any \(L \)-structure \(\mathcal{A} = \langle A; \ldots \rangle \) such that \(A \) has more than one element. Let \(\phi \) be the \(L \)-formula \(x_0 = x_1 \). Take two distinct elements \(a \) and \(b \) of \(A \). Then \(a \neq b \) gives \(\mathcal{A} \not\models \phi[a, b, x_0, x_1] \), so \(\mathcal{A} \not\models \phi \). On the other hand, \(\mathcal{A} \models \phi[a, a, x_0, x_1] \), so \(\mathcal{A} \not\models \neg \phi \).

Next, let \(\sigma \) be the \(L \)-sentence \(\forall x_0 \forall x_1 (x_0 = x_1) \). Then \(\sigma \) is false in the above \(\mathcal{A} \), so \(\not\models \sigma \). But \(\sigma \) is true in some \(L \)-structure, namely any \(L \)-structure that has just one element. Thus \(\not\models \neg \sigma \).