HW 1

Problem 1: indicate a bijection $\mathbb{N} \to \mathbb{Z}$.

Problem 2: indicate a bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Solution of 1: $f : \mathbb{N} \to \mathbb{Z}$ defined by f(2n) = n and f(2n+1) = -(n+1) is a bijection. It corresponds to enumerating (listing) \mathbb{Z} as $0, -1, 1, -2, 2, -3, 3, \ldots$

Solution of 2: order the pairs (m, n) according to their sum m+n, and for a given value of m + n, order them according to m, so we get the list

 $(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2) (2,1), (3,0), (0,4), \dots$

in which every pair (m, n) shows up exactly once. More precisely, the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$f(m,n) := \frac{(m+n)(m+n+1)}{2} + m$$

is a bijection with f(0,0) = 0, f(0,1) = 1, f(1,0) = 2, f(0,2) = 3, f(1,1) = 4 and so on. Another solution of Problem 2 uses the fact that every natural number ≥ 1 is of the form $2^m(2n+1)$ for a unique pair (m,n). Thus the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $g(m,n) := 2^m(2n+1) - 1$ is also a bijection. The first solution is special, since it is given by a "polynomial" function. (If I remember right, there is only one other bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by a polynomial function.)