SYLLABUS
Spring 2011

Math 555 meets: MWF 10:00-10:50 in 243 Altgeld Hall.

Instructor:
Nikos Tzirakis
359 Altgeld Hall
Phone: (217) 244-8233
Email: tzirakis@math.uiuc.edu
Mail Box: 250 Altgeld Hall

Instructor’s Office Hours: By appointment.

Description
The Fourier analytic theory of constant coefficient linear/nonlinear dispersive equations will be introduced. We focus mostly on the semilinear Schrodinger equation but the methods presented are applicable to a large class of dispersive partial differential equations and systems. Examples include the Korteweg de Vries equation, the nonlinear Wave equation and the Zakharov system to name a few. The goal is to study the Cauchy problem for nonlinear dispersive PDE. We study both problems of local nature (local existence of solutions, uniqueness, regularity, smoothing effects) and problems of global nature (finite time blow-up, global existence and asymptotic completeness of solutions). Although I intend to present an introduction to this vast field of research, many recent developments will be covered.

Prerequisites
A graduate class in PDE would be very useful. Knowledge of distributions and Sobolev spaces is not necessary as I will cover these topics in class when needed. In general every student which is comfortable with the material of Math 553 will not have a problem following the class.

Textbook: There is no textbook for this course. I will use my notes. Suggested books include

1. Nonlinear Dispersive Equations, Local and Global Analysis, by Terence Tao. CBMS (Conference Board of the Mathematical Sciences), AMS, No. 106.

2. Semilinear Schrodinger equations, by Thierry Cazenave. CLN (Courant Lecture Notes), AMS, No. 10.

In terms of covered material, I will present most of the topics included in the
first three chapters of T. Tao’s book.

Requirements:
There is no exam for this class, but each student will contribute to a presentation.

Grading Policy:
Presentation 40%
Attendance 60%

General Comments:
You are required to attend all classes.

For other updates, visit the course’s web-site
http://www.math.uiuc.edu/~tzirakis