Some answers to HW 1.

1b) ℓ^p is a separable metric space for $1 \leq P < \infty$

We note that ℓ^∞, which is the space of all bounded sequences of complex numbers with the metric

$$d(x, y) = \sup_{j \in \mathbb{N}} |x_j - y_j|$$

is not separable.

To see this let $y = (y_1, y_2, \ldots, y_n, \ldots)$ be a sequence of zeros and ones, $y \in \ell^\infty$ and they are uncountably many such sequences. To see this associate y with

\tilde{y} a real number in $[0, 1]$ whose binary representation is

$$\frac{y_1}{2^1} + \frac{y_2}{2^2} + \ldots$$

Since $[0, 1]$ is uncountable and any number inside $[0, 1]$ has a binary representation, the set of sequences of zeros and ones is uncountable.

If we let each of these sequences be the center of a ball with radius less than $1/2$, we have uncountably many non-intersecting balls. Now take any M dense in ℓ^∞. Each ball contains an element of M and thus ℓ^∞ is uncountable.

For $1 \leq P < \infty$ consider the countable set \mathcal{Q} of sequences of the form

(Without loss of generality consider real-valued sequences)

$$y = (y_1, y_2, \ldots, y_n, 0, \ldots, 0, \ldots)$$

and y_i rational.

Let $x = (x_i) \in \ell^P$ be such for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\sum_{j=N+1}^\infty |x_j|^P < \frac{\varepsilon}{2}$$

Then for each x_j there is $y_j \in \mathcal{Q}$ such that

$$|x_j - y_j| < \frac{\varepsilon}{2}$$

$$\mathcal{Q} = \mathbb{R}$$

and for each x_j there is $y_j \in \mathcal{Q}$ such that

$$\left(\frac{\varepsilon}{2N}\right)^{1/P}$$

This we can find $y \in \mathcal{M}$

$$\sum_{j=1}^N |x_j - y_j|^P < \frac{\varepsilon}{2}$$
and there \(d(x,y)^p \leq \epsilon^p \). Thus for any \(x \in \ell^p \) we can find \(y \in \ell^p \) such that

\[d(x,y) < \epsilon. \]

This \(\ell \) is dense in \(\ell^p \) and since it is countable, \(\ell^p \) is separable.

1) Consider \(x = (1,1,0,\ldots) \in \ell^p \) and \(y = (1,-1,0,\ldots) \in \ell^p \)

\[\|x\|_p = \|y\|_p = 2^{1/p} \quad \text{and} \quad \|x+y\| = \|x-y\| = 2. \]

But \(\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2) \iff 2^{2/p} = 1 \iff p = 2. \]

2) Consider \(x_m(t) := \begin{cases} 0 & \text{if } 0 \leq t \leq \frac{1}{2} \\ mt - \frac{w}{2} & \frac{1}{2} \leq t \leq \frac{1}{2} + \frac{1}{w} \\ 1 & \frac{1}{2} + \frac{1}{w} \leq t \leq 1 \end{cases} \)

which is continuous.

Assume \(x(t) \) continuous such that \(\|X_n - x\|_{L^2} \to 0 \) then

\[\int_0^{1/2} |x(t)|^2 \, dt + \int_{1/2}^{1/2 + 1/w} |x_n(t) - x(t)|^2 \, dt + \int_{1/2 + 1/w}^1 |1 - x(t)|^2 \, dt \to 0 \]

and the \(x(t) = 0 \) for \(0 \leq t < \frac{1}{2} \) but \(x(t) = 1 \) for \(\frac{1}{2} < t \leq 1 \)

and \(x(t) \) is not continuous.

But \(x_m \) is Cauchy if one attempts the unpleasant calculation for \(n > w \)

\[\|x_n - x_m\|_{L^2}^2 = \int_{1/2}^{1/2 + 1/w} \left(wt - \frac{w}{2} - nt + \frac{n}{2} \right)^2 \, dt + \int_{1/2 + 1/w}^{1/2 + 1/w} \left(1 - wt + \frac{w}{2} \right)^2 \, dt \]

\[= \frac{(m-n)^2}{3n^2} < \frac{1}{3m} - \frac{1}{3n} \]