Distortion of dimension by Sobolev and quasiconformal mappings

J. Tyson

18 June 2014

I. Introduction and overview, quasiconformal maps of \mathbb{R}^n and their effect on Hausdorff dimension
II. Global quasiconformal dimension in \mathbb{R}^n
III. Conformal dimension of metric spaces
IV. Sobolev dimension distortion in \mathbb{R}^n and in metric spaces
V. QC and Sobolev dimension distortion in the sub-Riemannian Heisenberg group
In this final lecture we will survey known results on distortion of dimension by Sobolev and quasiconformal mappings of the sub-Riemannian Heisenberg group \mathbb{H}^n.

We equip \mathbb{H}^n with the Carnot-Carathéodory metric d_{cc} and recall that the Hausdorff dimension of (\mathbb{H}^n, d_{cc}) is $Q = 2n + 2$.

A homeomorphism $f : \Omega \to \Omega'$ between domains in \mathbb{H}^n is (metrically) K-quasiconformal if

$$\limsup_{r \to 0} \frac{\sup \{d_{cc}(f(p), f(q)) : d_{cc}(p, q) = r\}}{\inf \{d_{cc}(f(p), f(q')) : d_{cc}(p, q') = r\}} \leq K \quad \forall \ p \in \Omega.$$
Many results of the Euclidean theory of quasiconformal maps carry over to the Heisenberg group (and even to more general metric measure spaces).
Many results of the Euclidean theory of quasiconformal maps carry over to the Heisenberg group (and even to more general metric measure spaces).

A major difficulty, however, lies in the lack of effective methods for constructing Heisenberg quasiconformal maps. For instance,

- naive versions of the radial stretch map \(x \mapsto |x|^{a-1}x \) fail to be quasiconformal (cf. recent work of Balogh–Fässler–Platis),
- PL techniques are not obviously available,
- no theory of Heisenberg quasiuniform convexity exists to date.
Distortion of dimension by quasiconformal maps in \mathbb{H}^n

1. For each $0 < s < t < Q$ there exists $E \subset \mathbb{H}^n$ compact and $f : \mathbb{H}^n \to \mathbb{H}^n$ qc s.t. $\dim E = s$ and $\dim f(E) = t$.
Distortion of dimension by quasiconformal maps in \mathbb{H}^n

1. For each $0 < s < t < Q$ there exists $E \subset \mathbb{H}^n$ compact and $f : \mathbb{H}^n \to \mathbb{H}^n$ qc s.t. $\dim E = s$ and $\dim f(E) = t$.

2. Gehring–Väisälä theorem: for each $0 < s < Q$ and $K \geq 1$ $\exists 0 < \beta \leq \alpha < Q$ s.t. $\beta \leq \dim f(E) \leq \alpha$ whenever $E \subset \mathbb{H}^n$ with $\dim E = s$ and f is K-qc.
3. For each $s \in [1, Q]$ there exists $E \subset \mathbb{H}^n$ compact such that $GQC \dim_{\mathbb{H}^n} E = \dim E = s$.

Proof sketch: For $s \leq 2^n + 1$, choose E to be the union of line segments along integral curves of the horizontal vector field X_1 emanating from a Cantor set in the $z_2 \cdots z_n$ subspace. Criteria of the Bourdon–Pansu theorem hold.

For $2^n + 1 \leq s \leq Q$, let $E = \bigcup_{r \in C} \partial B_{\mathbb{H}^n}(o, r)$ be a Cantor set's worth of Korányi spheres $\partial B_{\mathbb{H}^n}(o, r) = \{ p \in \mathbb{H}^n : d_{\mathbb{H}^n}(o, p) = r \}$. Apply a version of the Bourdon–Pansu criterion for such foliations.

4. (T, 2008) Kovalev's theorem holds for the Assouad dimension on \mathbb{H}^n.

In other words, if $E \subset \mathbb{H}^n$, $\dim A_E < 1$ then $GQC \dim_{\mathbb{H}^n} E = \dim E = s$.

Question: Kovalev's theorem in \mathbb{H}^n for Hausdorff dimension?
3. For each $s \in [1, Q] \exists E \subset \mathbb{H}^n$ compact s.t. $GQC \dim_{\mathbb{H}^n} E = \dim E = s$.

Proof sketch: For $s \leq 2n + 1$, choose E to be the union of line segments along integral curves of the horiz vector field X_1 emanating from a Cantor set in the $z_2 \cdots z_n t$-subspace. Criteria of the Bourdon–Pansu theorem hold.

For $2n + 1 \leq s \leq Q$, let $E = \bigcup_{r \in C} \partial B_H(o, r)$ be a Cantor set’s worth of Korányi spheres $\partial B_H(o, r) = \{p \in \mathbb{H}^n : d_H(o, p) = r\}$. Apply a version of the Bourdon–Pansu criterion for such foliations.
3. For each $s \in [1, Q] \exists E \subset \mathbb{H}^n$ compact s.t. $GQC\dim_{\mathbb{H}^n} E = \dim E = s$.

Proof sketch: For $s \leq 2n + 1$, choose E to be the union of line segments along integral curves of the horiz vector field X_1 emanating from a Cantor set in the $z_2 \cdots z_n t$-subspace. Criteria of the Bourdon–Pansu theorem hold.

For $2n + 1 \leq s \leq Q$, let $E = \bigcup_{r \in C} \partial B_H(o, r)$ be a Cantor set's worth of Korányi spheres $\partial B_H(o, r) = \{p \in \mathbb{H}^n : d_H(o, p) = r\}$. Apply a version of the Bourdon–Pansu criterion for such foliations.

4. (T, 2008) Kovalev’s theorem holds for the Assouad dimension on \mathbb{H}^n.

In other words, if $E \subset \mathbb{H}^n$, $\dim_A E < 1$ then $GQC\dim_{A,\mathbb{H}^n} E = 0.$
3. For each $s \in [1, Q]$ \(\exists E \subset \mathbb{H}^n \) compact s.t. \(GQC \dim_{\mathbb{H}^n} E = \dim E = s \).

Proof sketch: For $s \leq 2n + 1$, choose E to be the union of line segments along integral curves of the horiz vector field X_1 emanating from a Cantor set in the $z_2 \cdots z_n t$-subspace. Criteria of the Bourdon–Pansu theorem hold.

For $2n + 1 \leq s \leq Q$, let $E = \bigcup_{r \in C} \partial B_H(o, r)$ be a Cantor set’s worth of Korányi spheres $\partial B_H(o, r) = \{ p \in \mathbb{H}^n : d_H(o, p) = r \}$. Apply a version of the Bourdon–Pansu criterion for such foliations.

4. (T, 2008) Kovalev’s theorem holds for the Assouad dimension on \mathbb{H}^n.

In other words, if $E \subset \mathbb{H}^n$, $\dim_A E < 1$ then $GQC \dim_{A, \mathbb{H}^n} E = 0$.

Question: Kovalev’s theorem in \mathbb{H}^n for Hausdorff dimension?
Quasiconformal flows

Recall the standard left invariant vector fields $X_1, Y_1, \ldots, X_n, Y_n$ generating $H\mathbb{H}^n$.

$$X_j(p) = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t}, \quad Y_j(p) = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}$$

Korányi and Reimann (1995) give conditions on a vector field V which guarantee that the time s map $p(0) \mapsto p(s)$ associated to the ODE $\dot{p} = V(p)$ is $K(s)$-qc. Basic structure is

$$V = \varphi\, T + \frac{1}{4} \sum_{j=1}^{n} (X_j\varphi\, Y_j - Y_j\varphi\, X_j) \quad \text{for } \varphi \in C^\infty(\mathbb{H}^n)$$

with additional restrictions on the second horiz derivatives of φ.
Quasiconformal flows

Recall the standard left invariant vector fields $X_1, Y_1, \ldots, X_n, Y_n$ generating $H\mathbb{H}^n$.

$$X_j(p) = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t}, \quad Y_j(p) = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}$$

Korányi and Reimann (1995) give conditions on a vector field V which guarantee that the time s map $p(0) \mapsto p(s)$ associated to the ODE $\dot{p} = V(p)$ is $K(s)$-qc. Basic structure is

$$V = \varphi \ T + \frac{1}{4} \sum_{j=1}^{n} (X_j \varphi \ Y_j - Y_j \varphi \ X_j) \quad \text{for } \varphi \in C^\infty(\mathbb{H}^n)$$

with additional restrictions on the second horiz derivatives of φ.

Examples: $\varphi = 1$, $\varphi = x_k$, $\varphi = y_k$, $k = 1, \ldots, n$ generate left translation flows

$$\varphi = 2t \mapsto V = 2tT + \sum_j (x_j \ X_j + y_j \ Y_j)$$

generates dilation flow $p_0 \mapsto \delta_{es}(p_0)$
Fix a ball $B(p, R)$ and a family of disjoint balls $B_j = B(p_j, r_j) \subset B(p, r)$.

Choose potentials φ_j generating contractive similarities with fixed points at the p_j, and define $\varphi = \sum_j \chi_j \varphi_j$ for suitable smooth cutoff functions χ_j.

For suitable s, the time s map F associated to φ is qc, fixes $\partial B(p, r)$, and contracts each B_j. Moreover, F is conformal outside of B and inside each B_j. Iterate.

As the flow method only works for smooth maps, use compactness of the space of normalized K-qc maps to pass to the limit.
Theorem (Pansu)

Every qc map f of domains in \mathbb{H}^n is differentiable almost everywhere in the following sense: for a.e. $p \in \Omega$ the limit

$$\delta_{1/r} \circ \ell_{f(p)}^{-1} \circ f \circ \ell_p \circ \delta_r$$

converges locally uniformly to a grading preserving automorphism Df_p of \mathbb{H}^n.

Intuition: The CC ball at p of radius $0 < r \ll 1$ is comparable to the box $[-r, r]^2 \times [-r^2, r^2]$, sheared so that the $[-r, r]^2$ factor lies along the subspace H_p. Metric quasiconformality \Rightarrow at a point of differentiability, the size r and size r^2 directions cannot be interchanged by f.

15
Theorem (Pansu)

Every qc map f of domains in \mathbb{H}^n is differentiable almost everywhere in the following sense: for a.e. $p \in \Omega$ the limit

$$\delta_{1/r} \circ \ell_{f(p)}^{-1} \circ f \circ \ell_p \circ \delta_r$$

converges locally uniformly to a grading preserving automorphism Df_p of \mathbb{H}^n.

In particular, it follows that f is a.e. diff’ble in horizontal directions, and that f is a generalized contact map, $d_{hf_p} = (Df_p)_*|_{H_p\mathbb{H}^n}$ maps $H_p\mathbb{H}^n$ to $H_{f(p)}\mathbb{H}^n$ a.e.

Intuition: The CC ball at p of radius $0 < r \ll 1$ is comparable to the box $[-r, r]^{2n} \times [-r^2, r^2]$, sheared so that the $[-r, r]^{2n}$ factor lies along the subspace $H_p\mathbb{H}^n$. Metric quasiconformality \Rightarrow at a point of differentiability, the size r and size r^2 directions cannot be interchanged by f.

For $f = (f_1, \ldots, f_{2n+1})$ quasiconformal, we have

$$||d_h f||^Q \leq K \det Df \quad \text{a.e.}$$

In particular, each component f_j lies in the local horiz Sobolev space $W_{loc}^{1,Q}(\Omega)$.

For \(f = (f_1, \ldots, f_{2n+1}) \) quasiconformal, we have

\[
\|d_h f\|^Q \leq K \det Df \quad \text{a.e.}
\]

In particular, each component \(f_j \) lies in the local horiz Sobolev space \(W^{1,Q}_{loc}(\Omega) \).

Definition

Given a metric space \(Y \), fix an isometric embedding \(\kappa \) of \(Y \) into a Banach space \(V \). Then

\[
W^{1,p}(\Omega : Y) := \{ f \in W^{1,p}(\Omega : V) : f(p) \in \kappa(Y) \text{ a.e.} \}
\]

For instance when \(Y = \mathbb{H}^n \) we can choose \(V = \ell^\infty \) (Fréchet embedding).

Each \(f \) qc lies in the metric space-valued Sobolev space \(W^{1,Q}_{loc}(\Omega : \mathbb{H}^n) \), in fact, \(\exists p(\mathbb{H}^n, K) > Q \) s.t. \(f \) \(K \)-qc in \(\mathbb{H}^n \) lies in \(W^{1,p}_{loc} \) for all \(p < p(\mathbb{H}^n, K) \).
For \(f = (f_1, \ldots, f_{2n+1}) \) quasiconformal, we have
\[
\|dhf\|^Q \leq K \det Df \quad \text{a.e.}
\]
In particular, each component \(f_j \) lies in the local horiz Sobolev space \(W^{1,Q}_{loc}(\Omega) \).

Definition

Given a metric space \(Y \), fix an isometric embedding \(\kappa \) of \(Y \) into a Banach space \(V \). Then
\[
W^{1,p}(\Omega : Y) := \{ f \in W^{1,p}(\Omega : V) : f(p) \in \kappa(Y) \text{ a.e.} \}
\]

For instance when \(Y = \mathbb{H}^n \) we can choose \(V = \ell^\infty \) (Fréchet embedding).

Each \(f \) qc lies in the metric space-valued Sobolev space \(W^{1,Q}_{loc}(\Omega : \mathbb{H}^n) \), in fact, \(\exists p(\mathbb{H}^n, K) > Q \) s.t. \(f K\)-qc in \(\mathbb{H}^n \) lies in \(W^{1,p}_{loc} \) for all \(p < p(\mathbb{H}^n, K) \).

We’ll consider the exceptional sets problem for \(W^{1,p} \) maps, \(p > Q \), for generic elements in foliations of \(\mathbb{H}^n \) by left or right cosets of horizontal subgroups.
A smooth submanifold $\Sigma \subset \mathbb{H}^n$ of (topological) dimension $p \leq n$ has CC Hausdorff dimension p if and only if Σ is horizontal. Otherwise, it has CC dimension $p + 1$. On the other hand, every submanifold Σ of topological dimension $> n$ satisfies $\dim \Sigma = p + 1$.

For example, a (smooth) curve γ in \mathbb{H}^1 is horizontal if and only if $\dim \gamma = 1$, while any surface has CC dimension 3.
Let V be a left invariant horiz vector field, $V = \{\exp(sV) : s \in \mathbb{R}\}$ the corresponding one-parameter horizontal subgroup.

The Euclidean complement W of V is a normal subgroup of \mathbb{H}^n, and \mathbb{H}^n admits two semidirect decompositions: $\mathbb{H}^n = W \rtimes V$ or $\mathbb{H}^n = V \ltimes W$. These decompositions induce projection maps $p^L_W : \mathbb{H}^n \rightarrow W$ and $p^R_W : \mathbb{H}^n \rightarrow W$.

Recall: $\pi : X \rightarrow W$ is locally s-regular if π is locally Lipschitz, onto, and for each compact K $\exists C > 0$ s.t. for every $B_{r} \subset W$, $\pi^{-1}(B_{r}) \cap K$ is covered by $\leq Cr^{s}$ balls of radius Cr.

Let V be a left invariant horiz vector field, $V = \{\exp(sV) : s \in \mathbb{R}\}$ the corresponding one-parameter horizontal subgroup.

The Euclidean complement \mathbb{W} of V is a normal subgroup of \mathbb{H}^n, and \mathbb{H}^n admits two semidirect decompositions: $\mathbb{H}^n = \mathbb{W} \rtimes V$ or $\mathbb{H}^n = V \rtimes \mathbb{W}$. These decompositions induce projection maps $p^L_\mathbb{W} : \mathbb{H}^n \to \mathbb{W}$ and $p^R_\mathbb{W} : \mathbb{H}^n \to \mathbb{W}$.

Left coset foliation $\{a \ast V = (p^L_\mathbb{W})^{-1}(a) : a \in \mathbb{W}\}$: fibers are all 1-dimensional, (\mathbb{W}, d_{cc}) is $(2n + 1)$-dimensional, $p^L_\mathbb{W} : (\mathbb{H}^n, d_{cc}) \to (\mathbb{W}, d_{cc})$ is **not** Lipschitz.
Let V be a left invariant horiz vector field, $V = \{\exp(sV) : s \in \mathbb{R}\}$ the corresponding one-parameter horizontal subgroup.

The Euclidean complement W of V is a normal subgroup of H^n, and H^n admits two semidirect decompositions: $H^n = W \times V$ or $H^n = V \times W$. These decompositions induce projection maps $p_L^W : H^n \to W$ and $p_R^W : H^n \to W$.

Left coset foliation $\{a \ast V = (p_L^W)^{-1}(a) : a \in W\}$: fibers are all 1-dimensional, (W, d_{cc}) is $(2n + 1)$-dimensional, $p_L^W : (H^n, d_{cc}) \to (W, d_{cc})$ is not Lipschitz.

Right coset foliation $\{V \ast a = (p_R^W)^{-1}(a) : a \in W\}$: fibers are generically 2-dimensional, W can be equipped with a quotient metric d w.r.t. which W is $(2n)$-dimensional, $p_R^W : (H^n, d_{cc}) \to (W, d)$ is Lipschitz.
Let V be a left invariant horiz vector field, $V = \{ \exp(sV) : s \in \mathbb{R} \}$ the corresponding one-parameter horizontal subgroup.

The Euclidean complement W of V is a normal subgroup of H^n, and H^n admits two semidirect decompositions: $H^n = W \ltimes V$ or $H^n = V \ltimes W$. These decompositions induce projection maps $p^L_W : H^n \to W$ and $p^R_W : H^n \to W$.

Left coset foliation $\{ a \ast V = (p^L_W)^{-1}(a) : a \in W \}$: fibers are all 1-dimensional, (W, d_{cc}) is $(2n + 1)$-dimensional, $p^L_W : (H^n, d_{cc}) \to (W, d_{cc})$ is not Lipschitz.

Right coset foliation $\{ V \ast a = (p^R_W)^{-1}(a) : a \in W \}$: fibers are generically 2-dimensional, W can be equipped with a quotient metric d w.r.t. which W is $(2n)$-dimensional, $p^R_W : (H^n, d_{cc}) \to (W, d)$ is Lipschitz.

Lemma: $p^L_W : (H^n, d_{cc}) \to (W, d_E)$ and $p^R_W : (H^n, d_{cc}) \to (W, d)$ are both locally David–Semmes 2-regular.

Recall: $\pi : X \to W$ is *locally s-regular* if π is locally Lipschitz, onto, and for each compact $K \ni C > 0$ s.t. for every $B_r \subset W$, $\pi^{-1}(B) \cap K$ is covered by $\leq Cr^{-s}$ balls of radius Cr.

24
From the metric space results of Lecture IV we obtain conclusions about generic dimension increase for images of cosets of horizontal subgroups. These results are stated for the quotient metric d on W in the right coset foliation $V ⋊ W$ and for the Euclidean metric on W in the left coset foliation $W ⋉ V$.

Corollary

Let $Ω ⊂ H$ and let $f ∈ W^1_p(Ω : Y)$, $p > 4$, be continuous. For the horizontal subgroup $V = \{(x, 0, 0) : x ∈ R\}$ with complementary vertical subgroup $W = \{(0, y, t) : y, t ∈ R\}$, and for $2 < α ≤ 2p_p − 2$ we have

$$\dim d\{a ∈ W : \dim f(V ∗ a) ≥ α\} ≤ 2 − p(1 − 2^α),$$

$$\dim dE\{a ∈ W : \dim f(a ∗ V) ≥ α\} ≤ 2 − p(1 − 2^α).$$
Exceptional sets for \mathbb{H}^n Sobolev dimension distortion

joint work with Z. Balogh and K. Wildrick

From the metric space results of Lecture IV we obtain conclusions about generic dimension increase for images of cosets of horizontal subgroups. These results are stated for the quotient metric d on W in the right coset foliation $V \times W$ and for the Euclidean metric on W in the left coset foliation $W \times V$.

Corollary

Let $\Omega \subset \mathbb{H}$ and let $f \in W^{1,p}(\Omega : Y)$, $p > 4$, be continuous. For the horizontal subgroup $V = \{(x, 0, 0) : x \in \mathbb{R}\}$ with complementary vertical subgroup $W = \{(0, y, t) : y, t \in \mathbb{R}\}$, and for $2 < \alpha \leq \frac{2p}{p-2}$ we have

$$
\dim_d \{a \in W : \dim f(V * a) \geq \alpha\} \leq 2 - p\left(1 - \frac{2}{\alpha}\right),
$$

$$
\dim_{d_E} \{a \in W : \dim f(a * V) \geq \alpha\} \leq 2 - p\left(1 - \frac{2}{\alpha}\right).
$$
The dimension estimate for left coset foliations on the previous slide is not optimal (since the David–Semmes regularity exponent of the foliation differs from the fiber dimension).
The dimension estimate for left coset foliations on the previous slide is not optimal (since the David–Semmes regularity exponent of the foliation differs from the fiber dimension).

Theorem

Same assumptions as above. For $1 \leq \alpha \leq \frac{p}{p-3}$ *we have*

$$\dim_{d_E} \{ a \in W : \dim f(a \ast V) \geq \alpha \} \leq \begin{cases} 2 - \frac{p}{2} \left(1 - \frac{1}{\alpha}\right) & 1 \leq \alpha < \frac{p}{p-2} \\ 3 - p \left(1 - \frac{1}{\alpha}\right) & \frac{p}{p-2} \leq \alpha \leq \frac{p}{p-3} \end{cases}$$
The dimension estimate for left coset foliations on the previous slide is not optimal (since the David–Semmes regularity exponent of the foliation differs from the fiber dimension).

Theorem

Same assumptions as above. For $1 \leq \alpha \leq \frac{p}{p-3}$ we have

$$
\dim_{dE} \{ a \in W : \dim f(a \ast V) \geq \alpha \} \leq \begin{cases}
2 - \frac{p}{2}(1 - \frac{1}{\alpha}) & 1 \leq \alpha < \frac{p}{p-2} \\
3 - p(1 - \frac{1}{\alpha}) & \frac{p}{p-2} \leq \alpha \leq \frac{p}{p-3}
\end{cases}
$$

Example: For $p > 4$ and $1 < \alpha < \frac{p}{p-2}$, $\exists F \subset W$ compact and $f \in W^{1,p}(\mathbb{H} : \mathbb{R}^2)$ continuous s.t. $\dim f(a \ast V) \geq \alpha \ \forall \ a \in F$ and $0 < \mathcal{H}^{2-p(1-1/\alpha)}_{dE}(F) < \infty$.

29
For left cosets of m-dimensional horizontal subgroups the result reads as follows:

Theorem

Let $\Omega \subset \mathbb{H}^n$ and let $f \in W^{1,p}(\Omega : Y)$, $p > Q$, be continuous. For $m \in \{1, \ldots, n\}$, an m-dimensional horizontal subgroup \mathbb{V}, and $m \leq \alpha \leq \frac{pm}{p-Q+m}$ we have

$$\dim_{d_E}\{a : \dim f(a \ast \mathbb{V}) \geq \alpha\} \leq \begin{cases} (Q - m - 1) - \frac{p}{2}(1 - \frac{m}{\alpha}) & m \leq \alpha < \frac{pm}{p-2} \\ (Q - m) - p(1 - \frac{m}{\alpha}) & \frac{pm}{p-2} \leq \alpha \leq \frac{pm}{p-Q+m} \end{cases}$$

Again, we used the Eucl metric on \mathbb{W} to estimate the size of the exceptional set.
For left cosets of m-dimensional horizontal subgroups the result reads as follows:

Theorem

Let $\Omega \subset \mathbb{H}^n$ and let $f \in W^{1,p}(\Omega : Y)$, $p > Q$, be continuous. For $m \in \{1, \ldots, n\}$, an m-dimensional horizontal subgroup \mathbb{V}, and $m \leq \alpha \leq \frac{pm}{p-Q+m}$ we have

$$\dim_{d_E}\{a : \dim f(a \ast \mathbb{V}) \geq \alpha\} \leq \begin{cases} (Q - m - 1) - \frac{p}{2} (1 - \frac{m}{\alpha}) & m \leq \alpha < \frac{pm}{p-2} \\ (Q - m) - p (1 - \frac{m}{\alpha}) & \frac{pm}{p-2} \leq \alpha \leq \frac{pm}{p-Q+m} \end{cases}$$

Again, we used the Eucl metric on \mathbb{W} to estimate the size of the exceptional set.

The estimate recovers the borderline value $Q - m - 1 = 2n + 1 - m = \dim_{d_E} \mathbb{W}$ when $\alpha \to m$, and reaches zero when α tends to the universal upper dimension estimate $\frac{pm}{p-Q+m}$.

The statement is only on the level of dimension, not measure. Also, there is a gap between the positive result and the \mathbb{H}^1 example which we are not able to resolve. Such a result would follow, for instance, from a positive answer to the following:
For left cosets of \(m \)-dimensional horizontal subgroups the result reads as follows:

Theorem

Let \(\Omega \subset \mathbb{H}^n \) and let \(f \in W^{1,p}(\Omega : Y) \), \(p > Q \), be continuous. For \(m \in \{1, \ldots, n\} \), an \(m \)-dimensional horizontal subgroup \(\mathbb{V} \), and \(m \leq \alpha \leq \frac{pm}{p-Q+m} \) we have

\[
\dim_{d_E}\{a : \dim f(a \ast \mathbb{V}) \geq \alpha\} \leq \begin{cases} (Q-m-1) - \frac{p}{2}(1 - \frac{m}{\alpha}) & m \leq \alpha < \frac{pm}{p-2} \\ (Q-m) - p(1 - \frac{m}{\alpha}) & \frac{pm}{p-2} \leq \alpha \leq \frac{pm}{p-Q+m} \end{cases}
\]

Again, we used the Eucl metric on \(\mathbb{W} \) to estimate the size of the exceptional set.

The estimate recovers the borderline value \(Q - m - 1 = 2n + 1 - m = \dim_{d_E} \mathbb{W} \) when \(\alpha \rightarrow m \), and reaches zero when \(\alpha \) tends to the universal upper dimension estimate \(\frac{pm}{p-Q+m} \).

The statement is only on the level of dimension, not measure. Also, there is a gap between the positive result and the \(\mathbb{H}^1 \) example which we are not able to resolve. Such a result would follow, for instance, from a positive answer to the following:

Question: Does there exist a locally David–Semmes 1-regular surjection from \(\mathbb{H}^n \)?
Thanks for your attention!