For the convenience of the reader we reproduce the statements of the main theorem (Theorem 4.1) and one of the accompanying remarks (Remark 4.3) in the cited paper [2]. To clarify the remainder of this erratum we have divided the statement of the theorem into two parts.

We recall that S_a, for a sequence $a = (a_1, a_2, \ldots)$ with $a_j \in \{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\}$, $j = 1, 2, 3, \ldots$, denotes the Sierpiński carpet obtained by starting from the fixed square $[0, 1]^2$ (called the 0th level square), subdividing all $(j-1)$st level squares Q into congruent and essentially disjoint subsquares of side length a_j times the side length of Q, removing the central subsquare from each such subdivision, and passing to the limit as $j \to \infty$. For a more precise description of the procedure defining these carpets, see section 2 of the cited paper [2]. Theorem 4.1 of [2] refers only to the self-similar carpets S_a obtained for constant sequences a. For instance S_3 denotes the classical $\frac{1}{3}$ Sierpiński carpet. The set \text{Slopes}(S_a) denotes the set of slopes, in the interval $[0, 1]$ of nontrivial line segments contained in S_a.

Theorem 1 ([2], Theorem 4.1). (1) Let $a = (\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \ldots)$ be a constant sequence. Then the set of slopes \text{Slopes}(S_a)$ is the union of the following two sets:

$$A = \left\{ \frac{p}{q} : p + q \leq a, \quad 0 \leq p < q \leq a - 1, \quad p, q \in \mathbb{N} \cup \{0\}, \quad p + q \text{ odd} \right\}$$

and

$$B = \left\{ \frac{p}{q} : p + q \leq a - 1, \quad 1 \leq p \leq q \leq a - 2, \quad p, q \in \mathbb{N}, \quad p, q \text{ odd} \right\}.$$

(2) If $\alpha \in A$, then each nontrivial line segment in S_a with slope α touches vertices of peripheral squares, while if $\alpha \in B$, then each nontrivial line segment in S_a with slope α is disjoint from all peripheral squares. For each $\alpha \in A \cup B$, there exist maximal line segments in S_a with slope α. Finally, if $b < a$, then any maximal nontrivial line segment in S_b is also contained in S_a. In particular, \text{Slopes}(S_b) \subset \text{Slopes}(S_a)$.

Remark 2 ([2], Remark 4.3). Fix a, write $\text{Slopes}(S_a) = A \cup B$ as in the statement of Theorem 1, and fix $\alpha \in A \cup B$. If $\alpha \in A$, then there exists a line segment of slope α passing through the origin $(0, 0)$. On the other hand, if $\alpha \in B$, then there exists a line segment of slope α passing through the midpoint $(\frac{1}{2}, 0)$. Other line segments of this slope are obtained by applying Euclidean translations.

Part (1) of Theorem 1 provides a precise description of all possible slopes of nontrivial line segments in S_a. The proof of this fact is divided into two parts. In the first part, we construct explicitly one segment with slope α for any $\alpha \in A \cup B$. As mentioned in Remark 2, if $\alpha \in A$, then there exists a line segment of slope α passing through the origin $(0, 0)$ and if $\alpha \in B$, then there exists a line segment of slope α passing through the midpoint $(\frac{1}{2}, 0)$.
In part (2) of Theorem 1 the statement “If $\alpha \in A$, then each nontrivial line segment in S_α with slope α touches vertices of peripheral squares” is incorrect. In [1] Chen and Niemeyer provide the following counterexample to the assertion: there exists a nontrivial line segment beginning at the origin $(0,0)$ with slope $\alpha = \frac{2}{3}$ in the carpet S_7 which avoids all peripheral squares. Moreover, in Theorem 3.5 of [1] they provide a further refinement of part (2) of Theorem 1 which clarifies the different possibilities for segments with slope in the set A, emanating either from corners or from midpoints of constituent squares in the construction, and which also analyzes when such segments avoid or touch the vertices of peripheral squares. We remark that such a detailed analysis is of great importance to the authors of [1], who use it to initiate a theory of fractal billiards on the carpets S_α.

In conclusion we would like to take the opportunity to clarify the final sentence of Remark 2. The assertion “Other line segments of this slope are obtained by applying Euclidean translations” means only that the carpet S_α contains additional line segments of slope α, which can (evidently) be obtained from segments of the indicated type by Euclidean translations. The precise location of these additional segments, of course, is dictated by the structure of the carpet itself.

Acknowledgments. We are very grateful to Rob Niemeyer and Joe Chen for indicating to us their counterexample as well as their refined statement of our theorem, and for providing us with an early copy of [1].

References

EDC: Departamento de Matemática Aplicada, Escuela Técnica Superior de Ingenieros Industriales, UNED, 28040-Madrid, Spain.
E-mail address: edurand@ind.uned.es

JTT: Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, IL 61801, USA
E-mail address: tyson@math.uiuc.edu