1. (5 pts) Let $A \in M_{3 \times 3}(\mathbb{R})$. Let \mathbb{R}^3 have a basis v_1, v_2, v_3 such that $Av_1 = v_2, Av_2 = v_3, Av_3 = v_1$. Is A diagonalizable over \mathbb{R}? Is A diagonalizable over \mathbb{C}?
2. (5 pts) The eigenvalues of the matrix

\[A = \begin{pmatrix} 11 & -4 & 4 \\ 14 & -4 & 7 \\ 2 & -1 & 4 \end{pmatrix} \]

are 5 and 3.

(a) (3 pts) Find bases of the eigenspaces of \(A \).

(b) (1 pt) Is the matrix \(A \) diagonalizable? Is so, then find a diagonal matrix \(D \) and an invertible matrix \(Q \) such that \(Q^{-1}AQ = D \).

(c) (1 pt) Verify that \(AQ = QD \).
3. (5 pts) Let $T: V \to V$ be a linear transformation of a real vector space V. Suppose $T^2 = I_V$. Prove T is diagonalizable. (Hint. Observe that $\frac{v + T(v)}{2}$ and $\frac{v - T(v)}{2}$ are eigenvectors whose sum is equal to v.)
4. (5 pts) In a real inner product space, when the Cauchy-Schwarz inequality becomes an equality? State and prove.
5. (5 pts) Let \(W = \text{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\} \) be a subspace of \(\mathbb{R}^4 \) with the standard inner product. Find orthonormal bases for \(W \) and \(W^\perp \).
6. (5 pts) Let \(A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix} \) and \(b = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 7 \end{pmatrix} \).

(a) (3 pts) Find the least squares solution of the system \(Ax = b \), that is, find \(x \in \mathbb{R}^2 \) so that \(\|Ax - b\| \) is minimum.

(b) (2 pts) Find the orthogonal projection \(p \) of \(b \) onto \(\text{Col}A \) and verify that \(b - p \) is orthogonal to \(\text{Col}A \).
7. (5 pts) Let V be a real inner product space and let $T : V \to V$ be a self-adjoint operator. Let $v_1, v_2 \in V$ be eigenvectors of T with different eigenvalues. Prove that v_1 and v_2 are orthogonal.