1. (5 pts) True or false? (You don’t have to give reasons for your answers.)
 (a) If \(A \in M_{m \times n}(\mathbb{R}) \) and \(\text{rank}(A) = 0 \), then \(A = 0 \).

 (b) For two matrices \(A \) and \(B \), \(\text{rank}(AB) \) is the lesser of \(\text{rank}(A) \) and \(\text{rank}(B) \).

 (c) If \(T : V \to W \) is a linear transformation, then \(T \) carries linear independent subsets of \(V \) onto linear independent subsets of \(W \).

 (d) Every change of coordinate matrix is invertible.

 (e) The function \(\det : M_{n \times n}(\mathbb{R}) \to \mathbb{R} \) is a linear transformation.
2. (5 pts) Let $T : P_3(\mathbb{R}) \to P_2(\mathbb{R})$, $T(f) = f'$. Let $U : P_2(\mathbb{R}) \to P_3(\mathbb{R})$, $U(f(t)) = \int^t_0 f(s) \, ds$. Let $\alpha = \{1, t, t^2\}$ and $\beta = \{1, t, t^2, t^3\}$ be the standard bases for $P_2(\mathbb{R})$ and $P_3(\mathbb{R})$ resp. Find $[T]_\beta^\alpha$, $[U]_\alpha^\beta$, and $[UT]_\beta$ directly and verify that $[UT]_\beta = [U]_\alpha^\beta [T]_\beta^\alpha$.
3. (5 pts) Let $A \in M_{n \times n}(\mathbb{R})$. Recall $L_A : \mathbb{R}^n \to \mathbb{R}^n$, $L_A(x) = Ax$. Prove that A is invertible if and only if L_A is invertible. (You can use that the matrix product is associative.)
4. (5 pts) Let

\[A = \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix}, \quad \beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}. \]

Find \([L_A]_\beta\) directly and indicate a matrix \(Q\) such that \([L_A]_\beta = Q^{-1}AQ\). (You don’t have to calculate \(Q^{-1}\).)
5. (5 pts) Represent the matrix

\[A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \]

as a product of elementary matrices.
6. (5 pts)

(a) Let T and U be linear transformations such that the composition UT makes sense. Prove that $\text{rank}(UT) \leq \text{rank}(T)$.

(b) Let A and B be matrices such that the product AB makes sense. Prove that $\text{rank}(AB) \leq \text{rank}(B)$.
7. (5 pts)

(a) Let \(A \in M_{5 \times 5}(\mathbb{R}) \). Then for every \(c \in \mathbb{R} \) we have \(\det(cA) = b \det(A) \) for some \(b \in \mathbb{R} \). Find \(b \) in terms of \(c \).

(b) Let \(A, B \in M_{5 \times 5}(\mathbb{R}) \) and let \(AB = -BA \). Prove that either \(A \) or \(B \) is not invertible. (Hint. Use that \(\det(AB) = \det(A) \det(B) \).)