Characterization of $(2m, m)$-paintable graphs

Thomas Mahoney

University of Illinois at Urbana-Champaign
tmahone2@math.uiuc.edu

March 11, 2014

Joint work with
Jixian Meng and Xuding Zhu
List Coloring \(((a, b)\)-choosability)\]

Def. A list assignment \(L\) assigns each vertex \(v \in V(G)\) a list \(L(v)\) of available colors.
List Coloring \(((a, b)\)-choosability\)

Def. A list assignment \(L\) assigns each vertex \(v \in V(G)\) a list \(L(v)\) of available colors.

Def. A proper \((L, g)\)-coloring is an assignment giving each vertex \(v\) a set of \(g(v)\) colors from \(L(v)\) so that adjacent vertices have disjoint color sets.
List Coloring ($\mathbf{a, b}$)-choosability

Def. A list assignment L assigns each vertex $v \in V(G)$ a list $L(v)$ of available colors.

Def. A proper (L, g)-coloring is an assignment giving each vertex v a set of $g(v)$ colors from $L(v)$ so that adjacent vertices have disjoint color sets.

Def. A graph G is (f, g)-choosable if G has a proper (L, g)-coloring whenever $|L(v)| \geq f(v)$ for all v.

List Coloring \((a,b)\)-choosability

Def. A list assignment \(L\) assigns each vertex \(v \in V(G)\) a list \(L(v)\) of available colors.

Def. A proper \((L,g)\)-coloring is an assignment giving each vertex \(v\) a set of \(g(v)\) colors from \(L(v)\) so that adjacent vertices have disjoint color sets.

Def. A graph \(G\) is \((f,g)\)-choosable if \(G\) has a proper \((L,g)\)-coloring whenever \(|L(v)| \geq f(v)|\) for all \(v\).

Def. \(G\) is \((a,b)\)-choosable if it is \((f,g)\)-choosable when \(f(v) = a\) and \(g(v) = b\) for all \(v\).
List Coloring \((a, b)\)-choosability

Def. A list assignment \(L\) assigns each vertex \(v \in V(G)\) a list \(L(v)\) of available colors.

Def. A proper \((L, g)\)-coloring is an assignment giving each vertex \(v\) a set of \(g(v)\) colors from \(L(v)\) so that adjacent vertices have disjoint color sets.

Def. A graph \(G\) is \((f, g)\)-choosable if \(G\) has a proper \((L, g)\)-coloring whenever \(|L(v)| \geq f(v)\) for all \(v\).

Def. \(G\) is \((a, b)\)-choosable if it is \((f, g)\)-choosable when \(f(v) = a\) and \(g(v) = b\) for all \(v\).

Def. The fractional choice number of a graph \(G\) is \(\text{ch}_f(G) = \inf\left\{ \frac{a}{b} : \text{\(G\) is \((a, b)\)-choosable}\right\} \).
List Coloring ($\langle a, b \rangle$-choosability)

Def. A list assignment L assigns each vertex $v \in V(G)$ a list $L(v)$ of available colors.

Def. A proper (L, g)-coloring is an assignment giving each vertex v a set of $g(v)$ colors from $L(v)$ so that adjacent vertices have disjoint color sets.

Def. A graph G is (f, g)-choosable if G has a proper (L, g)-coloring whenever $|L(v)| \geq f(v)$ for all v.

Def. G is (a, b)-choosable if it is (f, g)-choosable when $f(v) = a$ and $g(v) = b$ for all v.

Def. The fractional choice number of a graph G is $\text{ch}_f(G) = \inf \left\{ \frac{a}{b} : G \text{ is } (a, b)\text{-choosable} \right\}$.

Conj. (ERT 1979) If G is (a, b)-choosable, then G is (am, bm)-choosable for all $m \geq 1$.
Results in \((a, b)\)-choosability

Thm. (Alon 1993) Given \((a, b, n)\), \(\exists m > 1\) such that every \((a, b)\)-choosable graph on \(n\) vxs is \((am, bm)\)-choosable.
Results in \((a, b)\)-choosability

Thm. (Alon 1993) Given \((a, b, n)\), \(\exists m > 1\) such that every \((a, b)\)-choosable graph on \(n\) vxs is \((am, bm)\)-choosable.

Thm. (Tuza–Voigt 1994) Planar graphs are \((5m, m)\)-choosable for all \(m \geq 1\).
Results in \((a, b)\)-choosability

Thm. (Alon 1993) Given \((a, b, n)\), \(\exists m > 1\) such that every \((a, b)\)-choosable graph on \(n\) vxs is \((am, bm)\)-choosable.

Thm. (Tuza–Voigt 1994) Planar graphs are \((5m, m)\)-choosable for all \(m \geq 1\).

Thm. (Tuza–Voigt 1994) If \(G\) is chordal, then \(G\) is \((\chi(G)m, m)\)-choosable for all \(m \geq 1\).
Results in \((a, b)\)-choosability

Thm. (Alon 1993) Given \((a, b, n)\), \(\exists m > 1\) such that every \((a, b)\)-choosable graph on \(n\) vxs is \((am, bm)\)-choosable.

Thm. (Tuza–Voigt 1994) Planar graphs are \((5m, m)\)-choosable for all \(m \geq 1\).

Thm. (Tuza–Voigt 1994) If \(G\) is chordal, then \(G\) is \((\chi(G)m, m)\)-choosable for all \(m \geq 1\).

\[
\text{ch}_f(G) = \chi_f(G) = \min \left\{ \frac{a}{b} : G \text{ is } (a, b)-\text{colorable} \right\}.
\]
Results in (a, b)-choosability

Thm. (Alon 1993) Given (a, b, n), $\exists m > 1$ such that every (a, b)-choosable graph on n vxs is (am, bm)-choosable.

Thm. (Tuza–Voigt 1994) Planar graphs are $(5m, m)$-choosable for all $m \geq 1$.

Thm. (Tuza–Voigt 1994) If G is chordal, then G is $(\chi(G)m, m)$-choosable for all $m \geq 1$.

Thm. (Alon–Tuza–Voigt 1995) $ch_f(G) = \chi_f(G) = \min \left\{ \frac{a}{b} : G \text{ is } (a, b)\text{-colorable} \right\}$.

Thm. (Tuza–Voigt 1996) If G is $(2, 1)$-choosable, then G is $(2m, m)$-choosable for all $m \geq 1$.
Results in \((a, b)\)-choosability

Thm. (Alon 1993) Given \((a, b, n)\), \(\exists m > 1\) such that every \((a, b)\)-choosable graph on \(n\) vxs is \((am, bm)\)-choosable.

Thm. (Tuza–Voigt 1994) Planar graphs are \((5m, m)\)-choosable for all \(m \geq 1\).

Thm. (Tuza–Voigt 1994) If \(G\) is chordal, then \(G\) is \((\chi(G)m, m)\)-choosable for all \(m \geq 1\).

Thm. (Alon–Tuza–Voigt 1995)
\[
\text{ch}_f(G) = \chi_f(G) = \min \left\{ \frac{a}{b} : G \text{ is } (a, b)\text{-colorable} \right\}.
\]

Thm. (Tuza–Voigt 1996) If \(G\) is \((2, 1)\)-choosable, then \(G\) is \((2m, m)\)-choosable for all \(m \geq 1\).

Thm. (Meng–Puleo–Zhu 2014+) Characterized the 3-choice-critical graphs that are \((4, 2)\)-choosable.
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. **Worse-case** analysis modeled by the following game:
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. **Worse-case** analysis modeled by the following game:

Two players: Lister and Painter on a graph \(G\) where each vertex \(v\) is assigned:

1) A positive number \(f(v)\) of tokens, and
2) A number of colors \(g(v)\) that \(v\) must receive.
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. **Worse-case** analysis modeled by the following game:

Two players: Lister and Painter on a graph \(G\) where each vertex \(v\) is assigned:
1) A positive number \(f(v)\) of tokens, and
2) A number of colors \(g(v)\) that \(v\) must receive.

Round: Lister marks a set \(M\) of vertices that are still “missing” colors. This uses one token at each \(v \in M\).
Online (a, b)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. Worse-case analysis modeled by the following game:

Two players: Lister and Painter on a graph G where each vertex v is assigned:
1) A positive number $f(v)$ of tokens, and
2) A number of colors $g(v)$ that v must receive.

Round: Lister marks a set M of vertices that are still “missing” colors. This uses one token at each $v \in M$. Painter selects a subset of M forming an independent set in G; a color distinct from those previously used is added to the colors sets of these vertices.
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. Worse-case analysis modeled by the following game:

Two players: Lister and Painter on a graph \(G\) where each vertex \(v\) is assigned:
1) A positive number \(f(v)\) of tokens, and
2) A number of colors \(g(v)\) that \(v\) must receive.

Round: Lister marks a set \(M\) of vertices that are still “missing” colors. This uses one token at each \(v \in M\). Painter selects a subset of \(M\) forming an independent set in \(G\); a color distinct from those previously used is added to the colors sets of these vertices.

Goal: Lister wins by marking a vertex with no tokens.
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists.
Worse-case analysis modeled by the following game:

Two players: Lister and Painter on a graph \(G\) where each vertex \(v\) is assigned:
1) A positive number \(f(v)\) of tokens, and
2) A number of colors \(g(v)\) that \(v\) must receive.

Round: Lister marks a set \(M\) of vertices that are still “missing” colors. This uses one token at each \(v \in M\).
Painter selects a subset of \(M\) forming an independent set in \(G\); a color distinct from those previously used is added to the colors sets of these vertices.

Goal: Lister wins by marking a vertex with no tokens. Painter wins by coloring each vertex the specified number of times.
Online \((a, b)\)-choosability (Lister/Painter Game)

Online Version: Coloring algorithm can’t see entire lists. **Worse-case** analysis modeled by the following game:

Two players: Lister and Painter on a graph \(G\) where each vertex \(v\) is assigned:
1) A positive number \(f(v)\) of tokens, and
2) A number of colors \(g(v)\) that \(v\) must receive.

Round: Lister marks a set \(M\) of vertices that are still “missing” colors. This uses one token at each \(v \in M\). Painter selects a subset of \(M\) forming an independent set in \(G\); a color distinct from those previously used is added to the colors sets of these vertices.

Goal: Lister wins by marking a vertex with no tokens. Painter wins by coloring each vertex the specified number of times.

- Adjacent color sets are disjoint \(\Rightarrow\) Proper \((L, g)\)-coloring
Definitions

Def. For $f : V(G) \rightarrow \mathbb{N}$ and $g : V(G) \rightarrow \mathbb{N}$, we say G is (f, g)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens and needs to receive $g(v)$ colors.
Definitions

Def. For $f : V(G) \to \mathbb{N}$ and $g : V(G) \to \mathbb{N}$, we say G is (f, g)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens and needs to receive $g(v)$ colors.

- (f, g)-paintable \Rightarrow (f, g)-choosable.
Definitions

Def. For $f : V(G) \rightarrow \mathbb{N}$ and $g : V(G) \rightarrow \mathbb{N}$, we say G is \((f, g)\)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens and needs to receive $g(v)$ colors.

- \((f, g)\)-paintable \Rightarrow \((f, g)\)-choosable.

Def. If G is \((f, g)\)-paintable when $f(v) = a$ and $g(v) = b$ for all $v \in V(G)$, then G is \((a, b)\)-paintable.
Definitions

Def. For \(f : V(G) \to \mathbb{N} \) and \(g : V(G) \to \mathbb{N} \), we say \(G \) is \((f, g)\)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(\nu \) starts with \(f(\nu) \) tokens and needs to receive \(g(\nu) \) colors.

- \((f, g)\)-paintable \(\Rightarrow \) \((f, g)\)-choosable.

Def. If \(G \) is \((f, g)\)-paintable when \(f(\nu) = a \) and \(g(\nu) = b \) for all \(\nu \in V(G) \), then \(G \) is \((a, b)\)-paintable.

** Conj.** (Zhu 2009) If \(G \) is \((a, b)\)-paintable, then \(G \) is \((am, bm)\)-paintable for all \(m \geq 1 \).
Definitions

Def. For $f : V(G) \to \mathbb{N}$ and $g : V(G) \to \mathbb{N}$, we say G is (f,g)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens and needs to receive $g(v)$ colors.

- (f,g)-paintable $\implies (f,g)$-choosable.

Def. If G is (f,g)-paintable when $f(v) = a$ and $g(v) = b$ for all $v \in V(G)$, then G is (a,b)-paintable.

** Conj. (Zhu 2009)** If G is (a,b)-paintable, then G is (am,bm)-paintable for all $m \geq 1$.

Def. The fractional paint number of a graph G is $\chi_{fp}(G) = \inf \left\{ \frac{a}{b} : G \text{ is } (a,b)\text{-paintable} \right\}$.
Definitions

Def. For \(f : V(G) \to \mathbb{N} \) and \(g : V(G) \to \mathbb{N} \), we say \(G \) is \((f, g)\)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens and needs to receive \(g(v) \) colors.

- \((f, g)\)-paintable \(\Rightarrow \) \((f, g)\)-choosable.

Def. If \(G \) is \((f, g)\)-paintable when \(f(v) = a \) and \(g(v) = b \) for all \(v \in V(G) \), then \(G \) is \((a, b)\)-paintable.

** Conj. (Zhu 2009)** If \(G \) is \((a, b)\)-paintable, then \(G \) is \((am, bm)\)-paintable for all \(m \geq 1 \).

Def. The fractional paint number of a graph \(G \) is \(\chi_{fp}(G) = \inf \left\{ \frac{a}{b} : G \text{ is } (a, b)\text{-paintable}\right\} \).

Thm. (Gutowski 2011) \(\chi_{fp}(G) = ch_f(G) = \chi_f(G) \), but...
Definitions

Def. For $f : V(G) \to \mathbb{N}$ and $g : V(G) \to \mathbb{N}$, we say G is (f, g)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens and needs to receive $g(v)$ colors.

- (f, g)-paintable \Rightarrow (f, g)-choosable.

Def. If G is (f, g)-paintable when $f(v) = a$ and $g(v) = b$ for all $v \in V(G)$, then G is (a, b)-paintable.

** Conj.** (Zhu 2009) If G is (a, b)-paintable, then G is (am, bm)-paintable for all $m \geq 1$.

Def. The fractional paint number of a graph G is $\chi_{fp}(G) = \inf \left\{ \frac{a}{b} : G \text{ is } (a, b)-\text{paintable} \right\}$.

Thm. (Gutowski 2011) $\chi_{fp}(G) = ch_f(G) = \chi_f(G)$, but...

Thm. (Gutowski 2011) \inf cannot be replaced by \min!
Odd Cycles

Thm. The \(\min t \) s.t. \(C_{2k+1} \) is \((t,m)\)-paintable is \(2m + \lceil m/k \rceil \).
Odd Cycles

Thm. The min t s.t. C_{2k+1} is (t,m)-paintable is $2m + \lceil m/k \rceil$.

Pf. (\geq) Suppose all vxs have the list $[t]$. Color i is given to $\leq k$ vxs. Each vtx receives m colors, so $t \geq \frac{(2k+1)m}{k}$.

Odd Cycles

Thm. The min \(t \) s.t. \(C_{2k+1} \) is \((t,m)\)-paintable is \(2m + \lceil m/k \rceil \).

Pf. (≥) Suppose all vxs have the list \([t]\). Color \(i \) is given to \(\leq k \) vxs. Each vtx receives \(m \) colors, so \(t \geq \frac{(2k+1)m}{k} \).

(≤) Let \(V(G) = \{ \nu_0, \ldots, \nu_{2k} \} \), and orient cyclically.
Odd Cycles

Thm. The min t s.t. C_{2k+1} is (t,m)-paintable is $2m + \lceil m/k \rceil$.

Pf. (\geq) Suppose all vxs have the list $[t]$. Color i is given to $\leq k$ vxs. Each vtx receives m colors, so $t \geq \frac{(2k+1)m}{k}$.

(\leq) Let $V(G) = \{v_0, \ldots, v_{2k}\}$, and orient cyclically. If *Lister* does not mark all vertices, then *Painter* colors an independent set greedily w.r.t. the orientation.
Odd Cycles

Thm. The min t s.t. C_{2k+1} is (t,m)-paintable is $2m + \lceil m/k \rceil$.

Pf. (\geq) Suppose all vxs have the list $[t]$. Color i is given to $\leq k$ vxs. Each vtx receives m colors, so $t \geq \frac{(2k+1)m}{k}$.

(\leq) Let $V(G) = \{v_0, \ldots, v_{2k}\}$, and orient cyclically. If Lister does not mark all vertices, then Painter colors an independent set greedily w.r.t. the orientation. A vertex v is marked and not colored only if its earlier neighbor is marked and colored.
Odd Cycles

Thm. The min t s.t. C_{2k+1} is (t,m)-paintable is $2m + \lceil m/k \rceil$.

Pf. (\geq) Suppose all vxs have the list $[t]$. Color i is given to $\leq k$ vxs. Each vtx receives m colors, so $t \geq \frac{(2k+1)m}{k}$.

(\leq) Let $V(G) = \{v_0, \ldots, v_{2k}\}$, and orient cyclically. If Lister does not mark all vertices, then Painter colors an independent set greedily w.r.t. the orientation. A vertex v is marked and not colored only if its earlier neighbor is marked and colored. On the ith round of Lister marking all $2k + 1$ vxs, Painter colors $\{v_i, v_{i+2}, \ldots, v_{i+2k-2}\}$ (mod $2k + 1$).
Odd Cycles

Thm. The min t s.t. C_{2k+1} is (t,m)-paintable is $2m + \lceil m/k \rceil$.

Pf. (\geq) Suppose all vxs have the list $[t]$. Color i is given to $\leq k$ vxs. Each vtx receives m colors, so $t \geq \frac{(2k+1)m}{k}$.

(\leq) Let $V(G) = \{v_0, \ldots, v_{2k}\}$, and orient cyclically. If Lister does not mark all vertices, then Painter colors an independent set greedily w.r.t. the orientation. A vertex v is marked and not colored only if its earlier neighbor is marked and colored.

On the ith round of Lister marking all $2k + 1$ vxs, Painter colors $\{v_i, v_{i+2}, \ldots, v_{i+2k-2}\}$ (mod $2k + 1$).

If Lister wins when $t = 2m + \lceil m/k \rceil$, then on some round $\exists v_i$ that has been “rejected” $m + \lceil m/k \rceil + 1$ times.
Odd Cycles

Thm. The \(\min t \) s.t. \(C_{2k+1} \) is \((t,m)\)-paintable is \(2m + \lceil m/k \rceil \).

Pf. \((\geq)\) Suppose all vxs have the list \([t]\). Color \(i\) is given to \(\leq k\) vxs. Each vtx receives \(m\) colors, so \(t \geq \frac{(2k+1)m}{k}\).

\((\leq)\) Let \(V(G) = \{v_0, \ldots, v_{2k}\}\), and orient cyclically. If Lister does not mark all vertices, then Painter colors an independent set greedily w.r.t. the orientation. A vertex \(v\) is marked and not colored only if its earlier neighbor is marked and colored.

On the \(i\)th round of Lister marking all \(2k+1\) vxs, Painter colors \(\{v_i, v_{i+2}, \ldots, v_{i+2k-2}\}\) \((\text{mod} \ 2k+1)\).

If Lister wins when \(t = 2m + \lceil m/k \rceil\), then on some round \(\exists v_i\) that has been “rejected” \(m + \lceil m/k \rceil + 1\) times. Each time, \(v_{i-1}\) was marked, but has received \(\leq m\) colors. So \(v_{i-1}, v_i\) are marked and not colored \(\geq \lceil m/k \rceil + 1\) times.
Odd Cycles

Thm. The \(\min t \) s.t. \(C_{2k+1} \) is \((t,m)\)-paintable is \(2m + \lceil m/k \rceil \).

Pf. \((\geq)\) Suppose all vxs have the list \([t]\). Color \(i \) is given to \(\leq k \) vxs. Each vtx receives \(m \) colors, so \(t \geq \frac{(2k+1)m}{k} \).

\((\leq)\) Let \(V(G) = \{v_0, \ldots, v_{2k}\} \), and orient cyclically. If **Lister** does not mark all vertices, then **Painter** colors an independent set greedily w.r.t. the orientation. A vertex \(v \) is marked and not colored only if its earlier neighbor is marked and colored.

On the \(i \)th round of **Lister** marking all \(2k + 1 \) vxs, **Painter** colors \(\{v_i, v_{i+2}, \ldots, v_{i+2k-2}\} \) (mod \(2k + 1 \)).

If **Lister** wins when \(t = 2m + \lceil m/k \rceil \), then on some round \(\exists v_i \) that has been “rejected” \(m + \lceil m/k \rceil + 1 \) times. Each time, \(v_{i-1} \) was marked, but has received \(\leq m \) colors. So \(v_{i-1}, v_i \) are marked and not colored \(\geq \lceil m/k \rceil + 1 \) times.

Only happens once every \(2k + 1 \) rounds. \(\Rightarrow \) All vxs lost \(\lceil m/k \rceil (2k + 1) + 1 > t \) tokens.
Foundation for Main Theorem

Cor. C_{2k+1} is not $(2m, m)$-paintable for any $m, k \geq 1$.
Foundation for Main Theorem

Cor. C_{2k+1} is not $(2m, m)$-paintable for any $m, k \geq 1$.

Thm. (TV 1996) $K_{2,4}$ is $(2m, m)$-choosable $\iff m$ is even.
Cor. C_{2k+1} is not $(2m, m)$-paintable for any $m, k \geq 1$.

Thm. (TV 1996) $K_{2,4}$ is $(2m, m)$-choosable $\iff m$ is even.

Def. The core of a graph G, $\text{core}(G)$, is obtained by iteratively deleting 1-vertices.
Foundation for Main Theorem

Cor. C_{2k+1} is not $(2m, m)$-paintable for any $m, k \geq 1$.

Thm. (TV 1996) $K_{2,4}$ is $(2m, m)$-choosable $\iff m$ is even.

Def. The core of a graph G, $\text{core}(G)$, is obtained by iteratively deleting 1-vertices.

Thm. (Zhu 2009) G is $(2, 1)$-paintable $\iff \text{core}(G)$ is
- K_1,
- $K_{2,3}$, or
- an even cycle.
Foundation for Main Theorem

Cor. C_{2k+1} is not $(2m, m)$-paintable for any $m, k \geq 1$.

Thm. (TV 1996) $K_{2,4}$ is $(2m, m)$-choosable $\iff m$ is even.

Def. The core of a graph G, $\text{core}(G)$, is obtained by iteratively deleting 1-vertices.

Thm. (Zhu 2009) G is $(2, 1)$-paintable $\iff \text{core}(G)$ is
- K_1,
- $K_{2,3}$, or
- an even cycle.

Thm. (CLMPTW 2014) G is 3-paint-critical $\iff \text{core}(G)$ is
- an odd cycle,
- $K_{2,4}$, or
- two even cycles joined by a path,
- $\Theta_{r,s,t}$, same parity, not all 2.
Foundation for Main Theorem

Cor. \(C_{2k+1} \) is not \((2m, m)\)-paintable for any \(m, k \geq 1 \).

Thm. (TV 1996) \(K_{2,4} \) is \((2m, m)\)-choosable \(\iff m \) is even.

Def. The core of a graph \(G \), \(\text{core}(G) \), is obtained by iteratively deleting 1-vertices.

Thm. (Zhu 2009) \(G \) is \((2, 1)\)-paintable \(\iff \text{core}(G) \) is

- \(K_1 \),
- \(K_{2,3} \), or
- an even cycle.

Thm. (CLMPTW 2014) \(G \) is 3-paint-critical \(\iff \text{core}(G) \) is

- an odd cycle,
- \(K_{2,4} \), or
- two even cycles joined by a path,
- \(\Theta_{r,s,t} \), same parity, not all 2.

Main Thm. (MMZ 2014+) Given a graph \(G \) and \(m \geq 1 \), \(G \) is \((2m, m)\)-paintable \(\iff G \) is \((2, 1)\)-paintable.
Proof Outline

(⇒) Every non-(2, 1)-paintable graph has a 3-paint-critical subgraph.
Proof Outline

(⇒) Every non-(2, 1)-paintable graph has a 3-paint-critical subgraph.

• Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4},$, and \ldots.

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}
Proof Outline

(⇒) Every non-\((2, 1)\)-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: \(C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \), and .
- Using induction on the total number of tokens, give a winning strategy for Lister.
Proof Outline

(\Rightarrow) Every non-$(2, 1)$-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: C_3, $K_{2, 4}$, $\Theta_{1, 3, 3}$, $\Theta_{2, 2, 4}$, $\bullet\bullet\bullet\bullet$, and $\bullet\bullet\bullet\bullet$.
- Using induction on the total number of tokens, give a winning strategy for Lister.

(\Leftarrow) Show K_1, C_{2n}, $K_{2, 3}$ are $(2m, m)$-paintable for $m \geq 1$.
Proof Outline

(⇒) Every non-\((2, 1)\)-paintable graph has a 3-paint-critical subgraph.

• Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: \(C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \), and .

• Using induction on the total number of tokens, give a winning strategy for Lister.

(⇐) Show \(K_1, C_{2n}, K_{2,3}\) are \((2m, m)\)-paintable for \(m \geq 1\).

• \(K_1\) is trivial.
Proof Outline

(⇒) Every non-\((2, 1)\)-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: \(C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \), and .
- Using induction on the total number of tokens, give a winning strategy for Lister.

(⇐) Show \(K_1, C_{2n}, K_{2,3}\) are \((2m, m)\)-paintable for \(m \geq 1\).

- \(K_1\) is trivial.
- \(C_{2n}\) is easy.
Proof Outline

(⇒) Every non-\((2, 1)\)-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: \(C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \bullet\bullet \bullet\), and \(\bullet\bullet\bullet\).
- Using induction on the total number of tokens, give a winning strategy for Lister.

(⇐) Show \(K_1, C_{2n}, K_{2,3}\) are \((2m, m)\)-paintable for \(m \geq 1\).

- \(K_1\) is trivial.
- \(C_{2n}\) is easy. (Painter can be greedy)
Proof Outline

(⇒) Every non-(2, 1)-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \begin{tikzpicture}[baseline=-.5ex]

\end{tikzpicture}$, and $\begin{tikzpicture}[baseline=-.5ex]

\end{tikzpicture}$.
- Using induction on the total number of tokens, give a winning strategy for Lister.

(⇐) Show $K_1, C_{2n}, K_{2,3}$ are $(2m, m)$-paintable for $m \geq 1$.

- K_1 is trivial.
- C_{2n} is easy. (Painter can be greedy)
- $K_{2,3}$ requires more work:
Proof Outline

(⇒) Every non-$(2, 1)$-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \text{ and } \text{ without a }$.

- Using induction on the total number of tokens, give a winning strategy for Lister.

(⇐) Show $K_1, C_{2n}, K_{2,3}$ are $(2m, m)$-paintable for $m \geq 1$.

- K_1 is trivial.

- C_{2n} is easy. (Painter can be greedy)

- $K_{2,3}$ requires more work:
 1) Assign weights to edges.
Proof Outline

(\Rightarrow) Every non-$(2, 1)$-paintable graph has a 3-paint-critical subgraph.

- Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4},$, and $\Theta_{2,4,2}$.

- Using induction on the total number of tokens, give a winning strategy for Lister.

(\Leftarrow) Show $K_1, C_{2n}, K_{2,3}$ are $(2m, m)$-paintable for $m \geq 1$.

- K_1 is trivial.

- C_{2n} is easy. (Painter can be greedy)

- $K_{2,3}$ requires more work:
 1) Assign weights to edges.
 2) Prove Painter can always “balance” the weights.
Proof Outline

⇒) Every non-(2, 1)-paintable graph has a 3-paint-critical subgraph.

• Reduce the (infinite) family of 3-paint-critical graphs to 6 graphs: \(C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \), and \(\).

• Using induction on the total number of tokens, give a winning strategy for Lister.

⇐) Show \(K_1, C_{2n}, K_{2,3} \) are \((2m, m)\)-paintable for \(m \geq 1 \).

• \(K_1 \) is trivial.

• \(C_{2n} \) is easy. (Painter can be greedy)

• \(K_{2,3} \) requires more work:
 1) Assign weights to edges.
 2) Prove Painter can always “balance” the weights.
 3) Show Painter wins if weights remain balanced.
Reducing 3-paint-critical family

Def. Given a graph H and $U \subseteq V(H)$, we say (H, U) is an (a, b)-gadget if H is (a, b)-colorable and every proper coloring gives the same colors to all vertices of U.
Reducing 3-paint-critical family

Def. Given a graph H and $U \subseteq V(H)$, we say (H, U) is an (a, b)-gadget if H is (a, b)-colorable and every proper coloring gives the same colors to all vertices of U.

Ex. $H = P_{2n+1}, U = \{v_1, v_{2n+1}\}, a = 2m, b = m$.
Def. Given a graph \(H \) and \(U \subseteq V(H) \), we say \((H, U) \) is an \((a, b)\)-gadget if \(H \) is \((a, b)\)-colorable and every proper coloring gives the same colors to all vertices of \(U \).

Ex. \(H = P_{2n+1}, U = \{v_1, v_{2n+1}\}, a = 2m, b = m \).

Def. Given a graph \(G \), a vertex \(v \in V(G) \), and an \((a, b)\)-gadget \((H, U)\), an \((H, U)\)-augmentation of \(G \) is obtained from \(G + H \) by splitting \(v \) into \(|U|\) copies, partitioning the edges among those copies, and identifying each copy with a vertex of \(U \).
Reducing 3-paint-critical family

Def. Given a graph H and $U \subseteq V(H)$, we say (H, U) is an (a, b)-gadget if H is (a, b)-colorable and every proper coloring gives the same colors to all vertices of U.

Ex. $H = P_{2n+1}$, $U = \{v_1, v_{2n+1}\}$, $a = 2m$, $b = m$.

Def. Given a graph G, a vertex $v \in V(G)$, and an (a, b)-gadget (H, U), an (H, U)-augmentation of G is obtained from $G + H$ by splitting v into $|U|$ copies, partitioning the edges among those copies, and identifying each copy with a vertex of U.

Lem. Given non-(a, b)-paintable G and (a, b)-gadget (H, U), no (H, U)-aug. of G is (a, b)-paintable.
Reducing 3-paint-critical family

Def. Given a graph H and $U \subseteq V(H)$, we say (H, U) is an (a, b)-gadget if H is (a, b)-colorable and **every** proper coloring gives the same colors to all vertices of U.

Ex. $H = P_{2n+1}$, $U = \{v_1, v_{2n+1}\}$, $a = 2m$, $b = m$.

Def. Given a graph G, a vertex $v \in V(G)$, and an (a, b)-gadget (H, U), an (H, U)-augmentation of G is obtained from $G + H$ by splitting v into $|U|$ copies, partitioning the edges among those copies, and identifying each copy with a vertex of U.

Lem. Given non-(a, b)-paintable G and (a, b)-gadget (H, U), no (H, U)-aug. of G is (a, b)-paintable.

Appl. Any 3-paint-critical graph can be obtained by replacing edges with odd-length paths in one of $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}, \diamondsuit\diamondsuit\diamondsuit$, or $\diamondsuit\diamondsuit\diamondsuit\diamondsuit$.
Reducing 3-paint-critical family

Def. Given a graph H and $U \subseteq V(H)$, we say (H, U) is an (a, b)-gadget if H is (a, b)-colorable and every proper coloring gives the same colors to all vertices of U.

Ex. $H = P_{2n+1}$, $U = \{v_1, v_{2n+1}\}$, $a = 2m$, $b = m$.

Def. Given a graph G, a vertex $v \in V(G)$, and an (a, b)-gadget (H, U), an (H, U)-augmentation of G is obtained from $G + H$ by splitting v into $|U|$ copies, partitioning the edges among those copies, and identifying each copy with a vertex of U.

Lem. Given non-(a, b)-paintable G and (a, b)-gadget (H, U), no (H, U)-aug. of G is (a, b)-paintable.

Appl. Any 3-paint-critical graph can be obtained by replacing edges with odd-length paths in one of $C_3, K_{2,4}, \Theta_{1,3,3}, \Theta_{2,2,4}$, or $\Theta_{1,3,3}$.

• Non-$(2m, m)$-paintability is preserved.
3-Paint-critical \Rightarrow non-$(2m, m)$-paintable

- Already covered C_3.
3-Paint-critical \implies non-$(2m, m)$-paintable

- Already covered C_3.

- All other 3-paint-critical graphs are bipartite.
3-Paint-critical \Rightarrow non-$\langle 2m, m \rangle$-paintable

- Already covered C_3.

- All other 3-paint-critical graphs are bipartite.

Lem. Let $uv \in E(G)$ and $g(u) + g(v) = \max\{f(u), f(v)\}$. If Lister marks u and v, then Painter must color u or v to avoid losing.
3-Paint-critical \Rightarrow \text{non-}(2m, m)\text{-paintable}

- Already covered C_3.
- All other 3-paint-critical graphs are bipartite.

Lem. Let $uv \in E(G)$ and $g(u) + g(v) = \max\{f(u), f(v)\}$. If Lister marks u and v, then Painter must color u or v to avoid losing.

Cor. For the $(2m, m)$-paintability game, if G is bipartite and Lister marks $V(G)$, then Painter must color a partite set to avoid losing.
3-Paint-critical \Rightarrow non-$(2m, m)$-paintable

- Already covered C_3.
- All other 3-paint-critical graphs are bipartite.

Lem. Let $uv \in E(G)$ and $g(u) + g(v) = \max\{f(u), f(v)\}$. If Lister marks u and v, then Painter must color u or v to avoid losing.

Cor. For the $(2m, m)$-paintability game, if G is bipartite and Lister marks $V(G)$, then Painter must color a partite set to avoid losing.

Appl. Let $f(v) = 2m, g(v) = m$, and G be bipartite. If Lister marks $V(G)$ each round until a partite set is missing one color,
3-Paint-critical \Rightarrow non-(2m, m)-paintable

- Already covered C_3.

- All other 3-paint-critical graphs are bipartite.

Lem. Let $uv \in E(G)$ and $g(u) + g(v) = \max \{f(u), f(v)\}$. If Lister marks u and v, then Painter must color u or v to avoid losing.

Cor. For the (2m, m)-paintability game, if G is bipartite and Lister marks $V(G)$, then Painter must color a partite set to avoid losing.

Appl. Let $f(v) = 2m, g(v) = m$, and G be bipartite. If Lister marks $V(G)$ each round until a partite set is missing one color, then each v has $r + 1$ tokens left, where $r = (#\text{missing colors in the other partite set})$.
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$
- $(r + 1, r)$

Pf. Basis: $r = 1$

- $(1, 1)$
- $(2, 1)$
- $(2, 1)$
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, 1)$
- $(r + 1, 1)$
- $(r + 1, r)$
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r, 1)$

Pf. Case 1:
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$

Pf. Case 1:

- (r, r)
- $(1, 1)$
- $(r + 1, r)$
- $(r + 1, r)$
Special case: \(C_4 \)

Lem. Lister can win in the following configurations:

- \((r, r)\)
- \((r + 1, r)\)
- \((r + 1, 1)\)
- \((r, 1)\)
- \((r + 1, r)\)

Pf. Case 2:
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r + 1, 1)$
- $(r + 1, 1)$
- (r, r)
- $(r + 1, r)$
- $(r, r - 1)$
- $(r, 1)$
- $(r + 1, r)$

Pf. Case 2:
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, r)$
- $(r + 1, 1)$

Pf. Case 2:

- $(r, r - 1)$
- $(r - 1, 1)$
- $(r, 1)$
- $(r, r - 1)$
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$

Cor. The following graph is not $(2m, m)$-paintable.
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$

Cor. The following graph is not $(2m, m)$-paintable.

Pf. Lister marks all vertices until one partite set needs one more color.
Special case: C_4

Lem. Lister can win in the following configurations:

- (r, r)
- $(r + 1, r)$
- $(r + 1, 1)$
- $(r, 1)$
- $(r + 1, 1)$

Cor. The following graph is not $(2m, m)$-paintable.

Pf. Lister marks all vertices until one partite set needs one more color. Then Lister marks the two 3-vertices, and wins on uncolored C_4 by the Lemma.
$K_{2,4}$ and Other Bipartite Cases

After Lister marks all vertices until one partite set is missing one color:

- $(r + 1, 1)$
- $(r + 1, r)$
- $(r + 1, 1)$
After **Lister** marks all vertices until one partite set is missing one color:

\[(r + 1, 1), (r + 1, r), (r, r)\]

If **Painter** colors the top vertex, then **Lister** wins on
$K_{2,4}$ and Other Bipartite Cases

After Lister marks all vertices until one partite set is missing one color:

Otherwise, Lister marks the complement of the first set.
After Lister marks all vertices until one partite set is missing one color:

Using induction on r, we're done. (Basis: $\chi_p(K_{2,4}) > 2$)
$K_{2,4}$ and Other Bipartite Cases

After Lister marks all vertices until one partite set is missing one color:

$(r + 1, r)$

$(r + 1, 1)$

$(r + 1, r)$

The other case for $K_{2,4}$ follows the same arguments.
After Lister marks all vertices until one partite set is missing one color:

\[(r + 1, r)\]

\[(r + 1, 1)\]

\[(r + 1, r)\]

The other case for $K_{2,4}$ follows the same arguments.

For the remaining 3-paint-critical graphs:
$K_{2,4}$ and Other Bipartite Cases

After *Lister* marks all vertices until one partite set is missing one color:

- $(r + 1, r)$
- $(r + 1, 1)$
- $(r + 1, r)$

The other case for $K_{2,4}$ follows the same arguments.

For the remaining 3-paint-critical graphs:

- *Lister* marks $V(G)$ until some part is missing one color.
$K_{2,4}$ and Other Bipartite Cases

After Lister marks all vertices until one partite set is missing one color:

$$\begin{align*}
(r + 1, r) \\
(r + 1, 1) \\
(r + 1, r)
\end{align*}$$

The other case for $K_{2,4}$ follows the same arguments.

For the remaining 3-paint-critical graphs:
- Lister marks $V(G)$ until some part is missing one color.
- Lister plays to force a C_4 from the Lemma.
\(K_{2,4}\) and Other Bipartite Cases

After Lister marks all vertices until one partite set is missing one color:

\[(r + 1, r)\]

\[(r + 1, 1)\]

\[(r + 1, r)\]

The other case for \(K_{2,4}\) follows the same arguments.

For the remaining 3-paint-critical graphs:

- Lister marks \(V(G)\) until some part is missing one color.
- Lister plays to force a \(C_4\) from the Lemma.

\[\Theta_{1,3,3}\]
\[\Theta_{2,2,4}\]
\[C_4 \cdot C_4\]

\[\therefore (2m, m)\)-paintable \(\Rightarrow\) \((2, 1)\)-paintable.
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.

$B(a_i b_j) = f(a_i) - g(a_i b_j)$
$B(a_i b_j) = f(b_j) - g(a_i b_j)$
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

\[w_A(e) + w_A(D) \geq 0 \]
\[w_B(e) + w_B(D) \geq 0. \]

\[w_A(a_ib_j) = f(a_i) - g(a_ib_j) \]
\[w_B(a_ib_j) = f(b_j) - g(a_ib_j) \]
Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

\[w_A(e) + w_A(D) \geq 0 \]
\[w_B(e) + w_B(D) \geq 0. \]

A vertex v is forced if $f(v) = g(v)$.

\[w_A(a_ib_j) = f(a_i) - g(a_ib_j) \]
\[w_B(a_ib_j) = f(b_j) - g(a_ib_j) \]
(2m, m)-Paintability of \(K_{2, 3}\)

Given \(f, g\), we define vertex names and weights.

For an edge \(e\) and nonempty set \(D\) of edges disjoint from \(e\), we require

\[
\begin{align*}
\omega_A(e) + \omega_A(D) &\geq 0 \\
\omega_B(e) + \omega_B(D) &\geq 0.
\end{align*}
\]

A vertex \(v\) is forced if \(f(v) = g(v)\).

If Lister marks \(M\) and no vertex is forced, then Painter plays according to the following strategy:

\[
\begin{align*}
\omega_A(a_i b_j) &= f(a_i) - g(a_i b_j) \\
\omega_B(a_i b_j) &= f(b_j) - g(a_i b_j)
\end{align*}
\]
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

\begin{align*}
 w_A(e) + w_A(D) &\geq 0 \\
 w_B(e) + w_B(D) &\geq 0.
\end{align*}

A vertex ν is forced if $f(\nu) = g(\nu)$.

If Lister marks M and no vertex is forced, then Painter plays according to the following strategy:

1) $a_i \in M, b_j \notin M, w_B(a_ib_j) < 0$ \quad \Rightarrow \quad Color M \cap A,

\begin{align*}
 w_A(a_ib_j) &= f(a_i) - g(a_ib_j) \\
 w_B(a_ib_j) &= f(b_j) - g(a_ib_j)
\end{align*}
((2m, m)-Paintability of $K_{2, 3}$)

Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

(*) $w_A(e) + w_A(D) \geq 0$

$w_B(e) + w_B(D) \geq 0$.

A vertex v is forced if $f(v) = g(v)$.

If Lister marks M and no vertex is forced, then Painter plays according to the following strategy:

1) $a_i \in M, b_j \notin M, w_B(a_ib_j) < 0$ \hspace{1cm} \Rightarrow \hspace{1cm} \text{Color } M \cap A,

2) $a_i \notin M, b_j \in M, w_A(a_ib_j) < 0$ \hspace{1cm} \Rightarrow \hspace{1cm} \text{Color } M \cap B,

\[
\begin{align*}
w_A(a_ib_j) &= f(a_i) - g(a_ib_j) \\
w_B(a_ib_j) &= f(b_j) - g(a_ib_j)
\end{align*}
\]
(2m, m)-Paintability of \(K_{2,3} \)

Given \(f, g \), we define vertex names and weights.

For an edge \(e \) and nonempty set \(D \) of edges disjoint from \(e \), we require

\[
\begin{align*}
\omega_A(e) + \omega_A(D) &\geq 0 \\
\omega_B(e) + \omega_B(D) &\geq 0.
\end{align*}
\]

A vertex \(v \) is forced if \(f(v) = g(v) \).

If Lister marks \(M \) and no vertex is forced, then Painter plays according to the following strategy:

1) \(a_i \in M, b_j \notin M, \omega_B(a_i b_j) < 0 \) \(\Rightarrow \) Color \(M \cap A \),
2) \(a_i \notin M, b_j \in M, \omega_A(a_i b_j) < 0 \) \(\Rightarrow \) Color \(M \cap B \),
3) \(|M \cap A| \geq |M \cap B| \) \(\Rightarrow \) Color \(M \cap A \),

where

\[
\begin{align*}
w_A(a_i b_j) &= f(a_i) - g(a_i b_j) \\
w_B(a_i b_j) &= f(b_j) - g(a_i b_j)
\end{align*}
\]
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

\begin{align*}
\text{(1)} \quad w_A(e) + w_A(D) &\geq 0 \\
\text{(2)} \quad w_B(e) + w_B(D) &\geq 0.
\end{align*}

A vertex ν is forced if $f(\nu) = g(\nu)$.

If Lister marks M and no vertex is forced, then Painter plays according to the following strategy:

1) $a_i \in M, b_j \notin M, w_B(a_ib_j) < 0 \Rightarrow \text{Color } M \cap A$,

2) $a_i \notin M, b_j \in M, w_A(a_ib_j) < 0 \Rightarrow \text{Color } M \cap B$,

3) $|M \cap A| \geq |M \cap B| \Rightarrow \text{Color } M \cap A$,

$w_A(a_ib_j) = f(a_i) - g(a_ib_j)$

$w_B(a_ib_j) = f(b_j) - g(a_ib_j)$
Given f, g, we define vertex names and weights.

$$w_A(a_ib_j) = f(a_i) - g(a_ib_j)$$
$$w_B(a_ib_j) = f(b_j) - g(a_ib_j)$$

For an edge e and nonempty set D of edges disjoint from e, we require

$$w_A(e) + w_A(D) \geq 0$$
$$w_B(e) + w_B(D) \geq 0.$$

A vertex v is forced if $f(v) = g(v)$.

If Lister marks M and no vertex is forced, then Painter plays according to the following strategy:

1) $a_i \in M$, $b_j \notin M$, $w_B(a_ib_j) < 0$ \Rightarrow Color $M \cap A$,

2) $a_i \notin M$, $b_j \in M$, $w_A(a_ib_j) < 0$ \Rightarrow Color $M \cap B$,

3) $|M \cap A| \geq |M \cap B|$ \Rightarrow Color $M \cap A$,

4) Otherwise, \Rightarrow Color $M \cap B$.
(2m, m)-Paintability of $K_{2,3}$

Given f, g, we define vertex names and weights.

For an edge e and nonempty set D of edges disjoint from e, we require

\[w_A(e) + w_A(D) \geq 0 \]
\[w_B(e) + w_B(D) \geq 0. \]

A vertex v is forced if $f(v) = g(v)$.

If Lister marks M and no vertex is forced, then Painter plays according to the following strategy:

1) $a_i \in M, b_j \notin M, w_B(a_ib_j) < 0 \Rightarrow$ Color $M \cap A$,
2) $a_i \notin M, b_j \in M, w_A(a_ib_j) < 0 \Rightarrow$ Color $M \cap B$,
3) $|M \cap A| \geq |M \cap B| \Rightarrow$ Color $M \cap A$,
4) Otherwise, Color $M \cap B$.

Always, $(*)$ preserved and $\max\{w_A(e), w_B(e)\} \geq 0$.

\[w_A(a_ib_j) = f(a_i) - g(a_ib_j) \]
\[w_B(a_ib_j) = f(b_j) - g(a_ib_j) \]
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 1: a_1 is forced.

$w_A = -y_i$
$w_B = x_i - a$

$(x_i + y_i, y_i)$

$(c + d, d)$

(a, a)
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 1: a_1 is forced.

$$\max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq a$$

$w_A = -y_i$

$w_B = x_i - a$

(a, a)

$(c + d, d)$

$(x_i + y_i, y_i)$
(2m, m)-Paintability of $K_{2, 3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 1: a_1 is forced.

$\max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq a$

$w_A(e) = c - y_1$, $w_A(D) = -y_2 - y_3$

$\Rightarrow c \geq y_1 + y_2 + y_3$
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 1: a_1 is forced.

max\{w_A(e), w_B(e)\} $\geq 0 \Rightarrow x_i \geq a$

$w_A(e) = c - y_1, \quad w_A(D) = -y_2 - y_3$

$\Rightarrow c \geq y_1 + y_2 + y_3$

Lister marks $N[a_1]$ for a rounds.
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 1: a_1 is forced.

\[
\max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq a
\]

\[
w_A(e) = c - y_1, \quad w_A(D) = -y_2 - y_3
\]

\[
\Rightarrow c \geq y_1 + y_2 + y_3
\]

Lister marks $N[a_1]$ for a rounds.

Painter wins by degeneracy.

(#tokens on a_2 is at least $d + \sum y_i$.)
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is **forced**.

Case 2: b_1 is forced.

\[
\begin{align*}
w_B &= -y_i \\
(b, b) &\quad \text{(Painted)} \\
(c_i + d_i, d_i) &\quad \text{(Painted)} \\
(w_A = x_i - b) &\quad \text{(Not painted)} \\
(x_i + y_i, y_i) &\quad \text{(Painted)}
\end{align*}
\]
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

$$\max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq b$$
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

$max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq b
w_B(e) = c_2 - y_1, w_B(D) = -y_2
\Rightarrow c_2 \geq y_1 + y_2$
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

$\max \{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq b$

- $w_B(e) = c_2 - y_1$, $w_B(D) = -y_2$
- $\Rightarrow c_2 \geq y_1 + y_2$

Similarly, $c_3 \geq y_1 + y_2$
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.
\[
\max \{ w_A(e), w_B(e) \} \geq 0 \Rightarrow x_i \geq b \\
w_B(e) = c_2 - y_1, \: w_B(D) = -y_2 \\
\Rightarrow c_2 \geq y_1 + y_2
\]

Similarly, $c_3 \geq y_1 + y_2$

Lister marks $N[b_1]$ for b rounds.
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

$\max \{ w_A(e), w_B(e) \} \geq 0 \Rightarrow x_i \geq b$

$w_B(e) = c_2 - y_1, w_B(D) = -y_2$

$\Rightarrow c_2 \geq y_1 + y_2$

Similarly, $c_3 \geq y_1 + y_2$

Lister marks $N[b_1]$ for b rounds.

Painter wins by degeneracy.

(#tokens on b_j is at least $d_j + \sum y_i$.)
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

\[
\max \{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq b
\]

\[
w_B(e) = c_2 - y_1, \quad w_B(D) = -y_2
\]

\[
\Rightarrow c_2 \geq y_1 + y_2
\]

Similarly, $c_3 \geq y_1 + y_2$

Lister marks $N[b_1]$ for b rounds.

Painter wins by degeneracy.

(#tokens on b_j is at least $d_j + \sum y_i$.)
(2m, m)-Paintability of $K_{2,3}$ (Cont.)

Painter uses strategy until a vertex is forced.

Case 2: b_1 is forced.

$max\{w_A(e), w_B(e)\} \geq 0 \Rightarrow x_i \geq b$

$w_B(e) = c_2 - y_1, w_B(D) = -y_2$

$\Rightarrow c_2 \geq y_1 + y_2$

Similarly, $c_3 \geq y_1 + y_2$

Lister marks $N[b_1]$ for b rounds.

Painter wins by degeneracy.

(#tokens on b_j is at least $d_j + \sum y_i$.)

$\therefore (2, 1)$-paintable $\Rightarrow (2m, m)$-paintable.
Open Questions

Ques. Given 3-paint-critical G and $m > 1$, what is $\min t$ such that G is (t, m)-paintable?
Open Questions

Ques. Given 3-paint-critical G and $m > 1$, what is $\min t$ such that G is (t, m)-paintable?

Conj. $G \notin \{C_{2k+1}, K_k\} \implies G$ is $(\Delta(G)m, m)$-paintable.
Open Questions

Ques. Given 3-paint-critical G and $m > 1$, what is $\min t$ such that G is (t, m)-paintable?

Conj. $G \notin \{C_{2k+1}, K_k\} \Rightarrow G$ is $(\Delta(G)m, m)$-paintable.

Conj. Planar graphs are $(5m, m)$-paintable $\forall m \geq 1$.
Open Questions

Ques. Given 3-paint-critical G and $m > 1$, what is $\min t$ such that G is (t, m)-paintable?

Conj. $G \notin \{C_{2k+1}, K_k\} \Rightarrow G$ is $(\Delta(G)m, m)$-paintable.

Conj. Planar graphs are $(5m, m)$-paintable $\forall m \geq 1$.

Conj. Chordal graphs are $(\chi(G)m, m)$-paintable $\forall m \geq 1$.
Open Questions

Ques. Given 3-paint-critical G and $m > 1$, what is $\min t$ such that G is (t, m)-paintable?

Conj. $G \notin \{C_{2k+1}, K_k\} \Rightarrow G$ is $(\Delta(G)m, m)$-paintable.

Conj. Planar graphs are $(5m, m)$-paintable $\forall m \geq 1$.

Conj. Chordal graphs are $(\chi(G)m, m)$-paintable $\forall m \geq 1$.

Thank You!