Online Scheduling and Paintability

Thomas Mahoney

University of Illinois at Urbana-Champaign
tmahone2@math.uiuc.edu

Joint work with
James Carraher, Sarah Loeb, Gregory J. Puleo, Mu-Tsun Tsai, and Douglas West
List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.
List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.
List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v) = k$ for all v.
List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v) = k$ for all v.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_l(G)$.
List Coloring (Graph Choosability)

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors; G is L-colorable if G has a proper coloring giving each vertex v a color from $L(v)$.

Def. A graph G is f-choosable if G is L-colorable whenever that $|L(v)| \geq f(v)$ for all v.

Def. G is k-choosable if it is f-choosable when $f(v) = k$ for all v.

The least such k is the choosability, choice number, or list-chromatic number of G, denoted $\chi_l(G)$.

Goal: Consider an online version of choosability.
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.

i.e. on round i, Painter doesn’t know which vertices have $i+1$ in their lists.
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.

i.e. on round i, Painter doesn’t know which vertices have $i + 1$ in their lists.

Ques. How much worse is this for Painter?
Online Choosability (Zhu [2009])

Let the coloring algorithm for choosability of a graph G be called Painter.

Ques. What if the algorithm (Painter) sees each list only a little bit at a time?

Suppose on round i, Painter must decide which vertices receive color i while only seeing what happened on earlier rounds.

i.e. on round i, Painter doesn’t know which vertices have $i+1$ in their lists.

Ques. How much worse is this for Painter?

Worst-case analysis is modeled by the following game:
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a “schedule,” allocating $|L(\nu)|$ tokens to each vertex ν.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a “schedule,” allocating $|L(v)|$ tokens to each vertex v. If in round i, Lister presents $\{v : i \in L(v)\}$, then Painter wins against this strategy $\iff G$ is L-colorable.
Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the uncolored vxs, spending one token at each marked vtx. Painter selects a subset of M forming an independent set in G; these vertices are assigned a color distinct from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens. Painter wins by coloring all vertices in the graph.

- Lister can use a list assignment L as a “schedule,” allocating $|L(\nu)|$ tokens to each vertex ν. If in round i, Lister presents $\{\nu : i \in L(\nu)\}$, then Painter wins against this strategy $\iff G$ is L-colorable.

- An adaptive Lister, responding to Painter’s earlier moves, may do better.
Example Game

Let’s play the **Lister/Painter** game on $\Theta_{2,2,4}$.
Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.

![Diagram of a game setup with nodes labeled 1, 2, 2, 2, 2, and connections between them.]*
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.

![Game Board Diagram]
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.

\[
\begin{array}{ccc}
\text{0} & & \text{0} \\
\end{array}
\]
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.
Example Game

Let’s play the Lister/Painter game on $\Theta_{2,2,4}$.

Conclude: Lister wins on $\Theta_{2,2,4}$ when each vertex has 2 tokens.
Definitions

Def. For \(f : V(G) \rightarrow \mathbb{N} \), we say \(G \) is \(f \)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens.
Definitions

Def. For $f : V(G) \to \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v) = k$ for all $v \in V(G)$, then G is k-paintable.
Definitions

Def. For $f : V(G) \to \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v) = k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.
Definitions

Def. For \(f : V(G) \to \mathbb{N} \), we say \(G \) is \(f \)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens.

Def. If \(G \) is \(f \)-paintable when \(f(v) = k \) for all \(v \in V(G) \), then \(G \) is \(k \)-paintable.

Def. The least \(k \) such that \(G \) is \(k \)-paintable, denoted \(\chi_p(G) \), is the paintability, paint number, online choice number, or online list-chromatic number of \(G \).

Obs. \(k \)-paintable \(\Rightarrow k \)-choosable \(\Rightarrow k \)-colorable. Thus \(\chi(G) \leq \chi_l(G) \leq \chi_p(G) \) for all \(G \).
Definitions

Def. For $f : V(G) \rightarrow \mathbb{N}$, we say G is f-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex v starts with $f(v)$ tokens.

Def. If G is f-paintable when $f(v) = k$ for all $v \in V(G)$, then G is k-paintable.

Def. The least k such that G is k-paintable, denoted $\chi_p(G)$, is the paintability, paint number, online choice number, or online list-chromatic number of G.

Obs. k-paintable \Rightarrow k-choosable \Rightarrow k-colorable. Thus $\chi(G) \leq \chi_l(G) \leq \chi_p(G)$ for all G.

Prop. (Erdős–Rubin–Taylor [1979]) $\chi_l(\Theta_{2,2,2r}) = 2$.
Definitions

Def. For \(f : V(G) \to \mathbb{N} \), we say \(G \) is \(f \)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens.

Def. If \(G \) is \(f \)-paintable when \(f(v) = k \) for all \(v \in V(G) \), then \(G \) is \(k \)-paintable.

Def. The least \(k \) such that \(G \) is \(k \)-paintable, denoted \(\chi_p(G) \), is the paintability, paint number, online choice number, or online list-chromatic number of \(G \).

Obs. \(k \)-paintable \(\implies k \)-choosable \(\implies k \)-colorable.

Thus \(\chi(G) \leq \chi_l(G) \leq \chi_p(G) \) for all \(G \).

Prop. (Erdős–Rubin–Taylor [1979]) \(\chi_l(\Theta_{2,2,2r}) = 2 \).

Ex. \(\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_l(\Theta_{2,2,4}) \).
Definitions

Def. For \(f : V(G) \rightarrow \mathbb{N} \), we say \(G \) is \(f \)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens.

Def. If \(G \) is \(f \)-paintable when \(f(v) = k \) for all \(v \in V(G) \), then \(G \) is \(k \)-paintable.

Def. The least \(k \) such that \(G \) is \(k \)-paintable, denoted \(\chi_p(G) \), is the paintability, paint number, online choice number, or online list-chromatic number of \(G \).

Obs. \(k \)-paintable \(\Rightarrow \) \(k \)-choosable \(\Rightarrow \) \(k \)-colorable. Thus \(\chi(G) \leq \chi_l(G) \leq \chi_p(G) \) for all \(G \).

Prop. (Erdős–Rubin–Taylor [1979]) \(\chi_l(\Theta_{2,2,2r}) = 2 \).

Ex. \(\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_l(\Theta_{2,2,4}) \).

When \(\chi(G) \leq k \) is known, \(\chi_l(G) \leq k \) is stronger.
Definitions

Def. For \(f : V(G) \to \mathbb{N} \), we say \(G \) is \(f \)-paintable if Painter has a winning strategy in the Lister/Painter game when each vertex \(v \) starts with \(f(v) \) tokens.

Def. If \(G \) is \(f \)-paintable when \(f(v) = k \) for all \(v \in V(G) \), then \(G \) is \(k \)-paintable.

Def. The least \(k \) such that \(G \) is \(k \)-paintable, denoted \(\chi_p(G) \), is the paintability, paint number, online choice number, or online list-chromatic number of \(G \).

Obs. \(k \)-paintable \(\Rightarrow \) \(k \)-choosable \(\Rightarrow \) \(k \)-colorable.

Thus \(\chi(G) \leq \chi_l(G) \leq \chi_p(G) \) for all \(G \).

Prop. (Erdős–Rubin–Taylor [1979]) \(\chi_l(\Theta_{2,2,2r}) = 2 \).

Ex. \(\chi_p(\Theta_{2,2,4}) = 3 > 2 = \chi_l(\Theta_{2,2,4}) \).

When \(\chi(G) \leq k \) is known, \(\chi_l(G) \leq k \) is stronger.
When \(\chi_l(G) \leq k \) is known, \(\chi_p(G) \leq k \) is stronger.
Past examples

When G is connected and not in $\{K_n, C_{2t+1}\}$,

$\chi(G) \leq \Delta(G)$ (Brooks [1941])

$\chi_l(G) \leq \Delta(G)$ (Vizing [1976])

$\chi_p(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])
Past examples

When G is connected and not in $\{K_n, C_{2t+1}\}$,
\[\chi(G) \leq \Delta(G) \text{ (Brooks [1941])} \]
\[\chi_l(G) \leq \Delta(G) \text{ (Vizing [1976])} \]
\[\chi_p(G) \leq \Delta(G) \text{ (Hladký–Král–Schauz [2010])} \]

When a suitable orientation exists,
G is k-choosable (Alon–Tarsi [1992])
G is k-paintable (Schauz [2010])
Past examples

When G is connected and not in $\{K_n, C_{2t+1}\}$,

- $\chi(G) \leq \Delta(G)$ (Brooks [1941])
- $\chi_\ell(G) \leq \Delta(G)$ (Vizing [1976])
- $\chi_p(G) \leq \Delta(G)$ (Hladký–Král–Schauz [2010])

When a suitable orientation exists,

- G is k-choosable (Alon–Tarsi [1992])
- G is k-paintable (Schauz [2010]) (non-algebraic)
Past examples

When G is connected and not in $\{K_n, C_{2t+1}\}$,
\[
\chi(G) \leq \Delta(G) \text{ (Brooks [1941])}
\]
\[
\chi_l(G) \leq \Delta(G) \text{ (Vizing [1976])}
\]
\[
\chi_p(G) \leq \Delta(G) \text{ (Hladký–Král–Schauz [2010])}
\]

When a suitable orientation exists,
\begin{itemize}
 \item G is k-choosable (Alon–Tarsi [1992])
 \item G is k-paintable (Schauz [2010]) (non-algebraic)
\end{itemize}

When G is planar,
\begin{itemize}
 \item $\chi(G) \leq 5$ (Heawood [1890])
 \item $\chi_l(G) \leq 5$ (Thomassen [1994])
 \item $\chi_p(G) \leq 5$ (Schauz [2009])
\end{itemize}
Past examples

When G is connected and not in $\{K_n, C_{2t+1}\}$,
\[
\chi(G) \leq \Delta(G) \quad \text{(Brooks [1941])}
\]
\[
\chi_\ell(G) \leq \Delta(G) \quad \text{(Vizing [1976])}
\]
\[
\chi_p(G) \leq \Delta(G) \quad \text{(Hladký–Král–Schauz [2010])}
\]

When a suitable orientation exists,
- G is k-choosable \text{(Alon–Tarsi [1992])}
- G is k-paintable \text{(Schauz [2010])} \quad \text{(non-algebraic)}

When G is planar,
\[
\chi(G) \leq 5 \quad \text{(Heawood [1890])}
\]
\[
\chi_\ell(G) \leq 5 \quad \text{(Thomassen [1994])}
\]
\[
\chi_p(G) \leq 5 \quad \text{(Schauz [2009])}
\]

When G is bipartite,
- G is $\Delta(G)$-edge-colorable \text{(König [1916])}
- G is $\Delta(G)$-edge-choosable \text{(Galvin [1995])}
- G is $\Delta(G)$-edge-paintable \text{(Schauz [2009])}
The line graph of K_k is
- k-colorable (Exercise)
- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])
Tournament Scheduling (Schauz [2010])

The line graph of K_k is
 k-colorable (Exercise)
 k-choosable (Häggkvist–Janssen [1997])
 k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
Tournament Scheduling (Schauz [2010])

The line graph of K_k is
k-colorable (Exercise)
k-choosable (Häggkvist–Janssen [1997])
k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5
Tournament Scheduling (Schauz [2010])

The line graph of K_k is
- k-colorable (Exercise)
- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5

Ques. Can we relax teams’ attendance requirements?
Tournament Scheduling (Schauz [2010])

The line graph of K_k is
- k-colorable (Exercise)
- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5

Ques. Can we relax teams’ attendance requirements?

Scheduling the tournament is possible when
- **Duration Allowances** (per team)
 - 5 days
 - no absences
- Since $L(K_5)$ is 5-colorable
Tournament Scheduling (Schauz [2010])

The line graph of K_k is

- k-colorable (Exercise)
- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament

- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5

Ques. Can we relax teams’ attendance requirements?

Scheduling the tournament is possible when

<table>
<thead>
<tr>
<th>Duration</th>
<th>Allowances (per team)</th>
<th>Since $L(K_5)$ is</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 days</td>
<td>no absences</td>
<td>5-colorable</td>
</tr>
<tr>
<td>7 days</td>
<td>one pre-specified absence</td>
<td>5-choosable</td>
</tr>
</tbody>
</table>
Tournament Scheduling (Schauz [2010])

The line graph of K_k is

- k-colorable (Exercise)
- k-choosable (Häggkvist–Janssen [1997])
- k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
- 5 teams (10 games total)
- Each team plays at most one game per day
- Equivalent to properly coloring edges of K_5

Ques. Can we relax teams’ attendance requirements?

Scheduling the tournament is possible when

<table>
<thead>
<tr>
<th>Duration</th>
<th>Allowances (per team)</th>
<th>Since $L(K_5)$ is</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 days</td>
<td>no absences</td>
<td>5-colorable</td>
</tr>
<tr>
<td>7 days</td>
<td>one pre-specified absence</td>
<td>5-choosable</td>
</tr>
<tr>
<td>7 days</td>
<td>one unspecified absence</td>
<td>5-paintable</td>
</tr>
</tbody>
</table>
Prop. (Degeneracy Tool) If $f(\nu) > d_G(\nu)$, then G is f-paintable $\iff G - \nu$ is $f|_{V(G-\nu)}$-paintable.
Prop. (Degeneracy Tool) If \(f(\nu) > d_G(\nu) \), then \(G \) is \(f \)-paintable \iff \(G - \nu \) is \(f|_{V(G-\nu)} \)-paintable.

Pf. Given a Painter strategy \(S \) on \(G - \nu \), postpone \(\nu \) when marked if \(S \) says to color a neighbor of \(\nu \). This happens at most \(d_G(\nu) \) times.
Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then G is f-paintable $\iff G - v$ is $f|_{V(G-v)}$-paintable.

Pf. Given a Painter strategy S on $G - v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_G(v)$ times.

Def. The join of G and H, denoted $G \diamond H$, is the disjoint union $G + H$ plus edges joining all of $V(G)$ to all of $V(H)$.
Tools

Prop. (Degeneracy Tool) If \(f(\nu) > d_G(\nu) \), then \(G \) is \(f \)-paintable \(\iff \) \(G - \nu \) is \(f|_{V(G-\nu)} \)-paintable.

Pf. Given a Painter strategy \(S \) on \(G - \nu \), postpone \(\nu \) when marked if \(S \) says to color a neighbor of \(\nu \). This happens at most \(d_G(\nu) \) times. \[\]

Def. The join of \(G \) and \(H \), denoted \(G \oplus H \), is the disjoint union \(G + H \) plus edges joining all of \(V(G) \) to all of \(V(H) \).

Thm. (CLMPTW) If \(G \) is \(k \)-paintable and \(|V(G)| \leq \frac{t}{t-1} k \), then \(G \oplus \overline{K}_t \) is \((k + 1)\)-paintable.
Prop. (Degeneracy Tool) If $f(v) > d_G(v)$, then G is f-paintable $\iff G - v$ is $f|_{V(G-v)}$-paintable.

Pf. Given a Painter strategy S on $G - v$, postpone v when marked if S says to color a neighbor of v. This happens at most $d_G(v)$ times.

Def. The join of G and H, denoted $G \oplus H$, is the disjoint union $G + H$ plus edges joining all of $V(G)$ to all of $V(H)$.

Thm. (CLMPTW) If G is k-paintable and $|V(G)| \leq \frac{t}{t-1}k$, then $G \oplus \overline{K}_t$ is $(k + 1)$-paintable.

Pf. Idea: Painter uses a k-paintability strategy S on G, ignoring the added t-set T, until a special round where $M \cap T$ is colored instead. Each $v \in T$ has a token left, and G can be finished with the extra tokens in $V(G)$.
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_l(G) = \chi(G)$.

G is chromatic-paintable if $\chi_p(G) = \chi(G)$.
Def. G is chromatic-choosable if $\chi_l(G) = \chi(G)$. G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

 Conj. (Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,\ldots,2}$)
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_l(G) = \chi(G)$. G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

** Conj. **(Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

- Recently proved by Reed, Noel, and Wu!
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi^l(G) = \chi(G)$. G is chromatic-paintable if $\chi^p(G) = \chi(G)$.

** Conj. (Ohba [2002])** If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,\ldots,2}$)

- Recently proved by Reed, Noel, and Wu!

** Conj. (Huang–Wong–Zhu [2011])** If $|V(G)| \leq 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,\ldots,2}$)
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_l(G) = \chi(G)$.
G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,...,2}$)

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \leq 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,...,2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then G is chromatic-choosable.
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_\ell(G) = \chi(G)$.
G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,\ldots,2}$)

- Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \leq 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,\ldots,2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_p(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1}k \Rightarrow \chi_p(G \oplus \overline{K_t}) \leq k+1$.

Cor. $K_{2,\ldots,2}$ is chromatic-paintable.
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_\ell(G) = \chi(G)$. G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

Conj. (Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,\ldots,2}$)

• Recently proved by Reed, Noel, and Wu!

Conj. (Huang–Wong–Zhu [2011]) If $|V(G)| \leq 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,\ldots,2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_p(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1} k \Rightarrow \chi_p(G \oplus \overline{K}_t) \leq k+1$.

Cor. $K_{2,\ldots,2}$ is chromatic-paintable.

Sharpness: $\chi_p(K_{3,2}) = 2$, but $\chi_p(K_{3,2,2}) = 4$ ([KKLZ]).
Ohba’s Conjecture

Def. G is chromatic-choosable if $\chi_l(G) = \chi(G)$. G is chromatic-paintable if $\chi_p(G) = \chi(G)$.

** Conj.** (Ohba [2002]) If $|V(G)| \leq 2\chi(G) + 1$, then G is chromatic-choosable. (Sharpness: $K_{4,2,2,\ldots,2}$)

Recently proved by Reed, Noel, and Wu!

** Conj.** (Huang–Wong–Zhu [2011]) If $|V(G)| \leq 2\chi(G)$, then G is chromatic-paintable. (Sharpness: $K_{3,2,2,\ldots,2}$)

Thm. (Ohba [2002]) If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then G is chromatic-choosable.

Thm. $\chi_p(G) \leq k$ and $|V(G)| \leq \frac{t}{t-1} k \Rightarrow \chi_p(G \oplus \overline{K_t}) \leq k+1$.

Cor. $K_{2,\ldots,2}$ is chromatic-paintable.

Sharpness: $\chi_p(K_{3,2}) = 2$, but $\chi_p(K_{3,2,2}) = 4$ ([KKLZ]).

Cor. $|V(G)| \leq \chi(G) + 2\sqrt{\chi(G)−1} \Rightarrow$ chrom-paintable.
Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k,r}$ is k-choosable $\iff r < k^k$.
Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k,r}$ is k-choosable $\iff r < k^k$.

Thm. (CLMPTW) Consider $K_{k,r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$, where t_1, \ldots, t_k are the token counts in X.

![Diagram of a complete bipartite graph $K_{k,r}$ with parts X and Y, where X has size k and Y has size r. Each vertex in Y has k tokens, and Painter has a winning strategy if $r < \prod_{i=1}^{k} t_i$, where t_1, \ldots, t_k are the token counts in X.](image)
Complete Bipartite Graphs

Thm. (Vizing [1976]) $K_{k,r}$ is k-choosable $\iff r < k^k$.

Thm. (CLMPTW) Consider $K_{k,r}$ with parts X of size k and Y of size r. If each vertex of Y has k tokens, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$, where t_1, \ldots, t_k are the token counts in X.

Cor. $K_{k,r}$ is k-paintable $\iff r < k^k$.
k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.
k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.

Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.

Let $\{L(y) : y \in Y\} = U_1 \times \cdots \times U_k$.
Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

k-paintability for $K_{k,r}$

Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow \text{Painter wins.}$
k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow$ Painter wins. $\sum t_i = k \Rightarrow r = 0 \Rightarrow$ win ✓.
k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow Painter$ wins.
$\sum t_i = k \Rightarrow r = 0 \Rightarrow$ win \checkmark.
$\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool).
k-paintability for $K_{k,r}$

Thm. *(CLMPTW)* Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y) : y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow Painter$ wins. $\sum t_i = k \Rightarrow r = 0 \Rightarrow win \checkmark$.
$\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool).
Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.
Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable. Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint. Let $\{L(y): y \in Y\} = U_1 \times \cdots \times U_k$. Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow$ Painter wins. $\sum t_i = k \Rightarrow r = 0 \Rightarrow$ win \checkmark.

$\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool). Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.

Case 1: $q < \prod_{i=1}^{k-1} t_i$. Painter colors x_k. $Y - M$ is degenerate; apply ind. hyp. to $(X - x_k) \cup (M \cap Y)$.

k-paintability for $K_{k,r}$
k-paintability for $K_{k,r}$

Thm. (CLMPTW) Consider $K_{k,r}$ with $|X| = k$ and $|Y| = r$. If $f(y) = k$ for $y \in Y$ and $f(x_i) = t_i$ for $x_i \in X$, then

Painter has a winning strategy $\iff r < \prod_{i=1}^{k} t_i$.

Pf. $r = \prod t_i \Rightarrow K_{k,r}$ is not f-choosable.
Let $L(x_i) = U_i$ with $|U_i| = t_i$ and pairwise disjoint.
Let $\{L(y) : y \in Y\} = U_1 \times \cdots \times U_k$.
Any coloring of X blocks all colors of some $y \in Y$.

$r < \prod t_i \Rightarrow$ Painter wins. $\sum t_i = k \Rightarrow r = 0 \Rightarrow$ win ✓.

$\sum t_i > k$: may assume $|M \cap X| = 1$ (by degeneracy tool).
Let $M \cap X = \{x_k\}$ and $q = |M \cap Y|$.

Case 1: $q < \prod_{i=1}^{k-1} t_i$. Painter colors x_k.
$Y - M$ is degenerate; apply ind. hyp. to $(X - x_k) \cup (M \cap Y)$.

Case 2: $q \geq \prod_{i=1}^{k-1} t_i$. Painter colors $M \cap Y$.
$|Y - M| < \prod t_i - q \leq \prod_{i=1}^{k-1} t_i(t_k - 1)$; ind. hyp. applies!
Open Question

Ques. Can $\chi_p(G) - \chi_l(G) > 1$?
Open Question

Ques. Can $\chi_p(G) - \chi_l(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs
- $\chi_l(K_{k,k}) \leq \lg k - \left(\frac{1}{2} + o(1)\right) \lg \lg k$ (Alon)
- $\chi_p(K_{k,k}) \leq \lg k$ (KKLZ [2012])
Open Question

Ques. Can $\chi_p(G) - \chi_\ell(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs

$\chi_\ell(K_{k,k}) \leq \lg k - \left(\frac{1}{2} + o(1)\right) \lg \lg k$ (Alon)

$\chi_p(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs

$\chi_\ell(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead [2000])

$\chi_p(K_{3*k}) \leq \frac{3}{2}k$ (KMZ [2013+])
Ques. Can $\chi_p(G) - \chi_l(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs

$\chi_l(K_{k,k}) \leq \lg k - \left(\frac{1}{2} + o(1)\right) \lg \lg k$ \text{(Alon)}

$\chi_p(K_{k,k}) \leq \lg k$ \text{(KKLZ [2012])}

Possibility 2: Complete multipartite graphs

$\chi_l(K_{3^*k}) = \left\lceil \frac{4k - 1}{3} \right\rceil$ \text{(Kierstead [2000])}

$\chi_p(K_{3^*k}) \leq \frac{3}{2} k$ \text{(KMZ [2013+])}

Ques. What is $\min \{r: K_{k+j,r} \text{ is not } k\text{-paintable}\}$?
Open Question

Ques. Can \(\chi_p(G) - \chi_l(G) > 1 \)?

Graphs to consider:

Possibility 1: Complete bipartite graphs

\[
\chi_l(K_{k,k}) \leq \lg k - \left(\frac{1}{2} + o(1) \right) \lg \lg k \quad \text{(Alon)}
\]

\[
\chi_p(K_{k,k}) \leq \lg k \quad \text{(KKLZ [2012])}
\]

Possibility 2: Complete multipartite graphs

\[
\chi_l(K_{3^*k}) = \left\lceil \frac{4k-1}{3} \right\rceil \quad \text{(Kierstead [2000])}
\]

\[
\chi_p(K_{3^*k}) \leq \frac{3}{2} k \quad \text{(KMZ [2013+])}
\]

Ques. What is \(\min \{ r : K_{k+j,r} \text{ is not } k\text{-paintable} \} \)?

Hard to compute for \(j > 0 \)!
Open Question

Ques. Can $\chi_p(G) - \chi_l(G) > 1$?

Graphs to consider:

Possibility 1: Complete bipartite graphs
- $\chi_l(K_{k,k}) \leq \lg k - \left(\frac{1}{2} + o(1)\right) \lg \lg k$ (Alon)
- $\chi_p(K_{k,k}) \leq \lg k$ (KKLZ [2012])

Possibility 2: Complete multipartite graphs
- $\chi_l(K_{3^*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead [2000])
- $\chi_p(K_{3^*k}) \leq \frac{3}{2} k$ (KMZ [2013+])

Ques. What is $\min\{r: K_{k+j,r} \text{ is not } k\text{-paintable}\}$?

Hard to compute for $j > 0$!

Thank You!