Finding Derivatives

1. Find $f'(x)$ given that $f(x) = 4x^{10} + \frac{1}{\sqrt{x}} - \sec x + \ln x$

2. Find $\frac{dv}{dt}$ given that $v = 5t^6 \sin^{-1} (8t)$

3. Find $w'(q)$ given that $w(q) = \frac{\sin (q^3)}{q^4 + 9q}$

4. Find $g'(t)$ given that $g(t) = e^{\cos^2(4t)}$

5. Find $\frac{dy}{dx}$ given that $e^{2y} = x^3y^5 + 6x$

6. Find $g'(t)$ given that $g(t) = 5t^6 - 4t^3 + 10t - e^2$

7. Find $\frac{dv}{dt}$ given that $v = 5t^4 \tan^{-1} t$

8. Find $f'(x)$ given that $f(x) = \frac{\ln x}{x^3 + 4}$

9. Find $h'(t)$ given that $h(t) = \sin (e^{2t})$

10. Find $h'(t)$ given that $h(t) = 40t^3 + \frac{1}{3\sqrt{t}} - 18$

11. Find $\frac{dq}{dt}$ given that $q = 5t^2 \sec t$

12. Find $f'(x)$ given that $f(x) = \frac{x^5}{\ln x}$

13. Find $w'(t)$ given that $w(t) = \tan^{-1} (5t^2)$

14. Find $g'(t)$ given that $g(t) = 5t^5 + \sqrt{t} - 40$

15. Find $f'(x)$ given that $f(x) = \frac{x^5}{\sin x}$

16. Find $P'(t)$ given that $P(t) = (t^9 - 10t^4 + 12)^8$

17. Evaluate the following derivatives.

(a) $\frac{d}{dx} (\cos x) =$

(b) $\frac{d}{dx} (\csc x) =$

(c) $\frac{d}{dx} (\tan x) =$

(d) $\frac{d}{dx} (\sin^{-1} x) =$

(e) $\frac{d}{dx} (\ln x) =$
Implicit Differentiation

1. A spherical balloon is inflated at a constant rate of 5 \(ft^3/min \). How quickly is the balloon’s radius increasing at the instant the volume is 20 \(ft^3 \)?

2. A particle moves along the curve \(y = \frac{4}{5}x^2 \). As the particle passes through the point (3,4), its \(x \)-coordinate increases at a rate of 15 cm/s. How fast is the distance from the particle to the origin changing at this instant?

3. Find \(\frac{dy}{dx} \) given that \(\sin(x^2 + y^3) = 5y + 8x \). It is okay to leave your answer in terms of both \(x \) and \(y \).

4. Find the slope of the line tangent to the curve \(x^2y^3 = 3x - 2y \) at the point (2,1).

5. A particle is moving along the curve \(y = \sqrt{1 + x^3} \). As it reaches the point (2,3), the \(y \)-coordinate is increasing at a rate of 18 cm/sec. How fast is the \(x \)-coordinate of the point changing at that instant?

6. Find \(\frac{dy}{dx} \) given that \(x^5e^y = 2x^3 + 5y^2 + 6 \). It is okay to leave your answer in terms of both \(x \) and \(y \).

7. A small balloon is released at a point 40 feet away from an observer, who is on level ground. If the balloon goes straight up at a rate of 10 feet per second, how fast is the distance from the observer to the balloon increasing when the balloon is 30 feet high?

8. A ball is tossed straight up with an initial velocity of 16 feet per second. The ball is 5 feet above the ground when it is released. Its height at time \(t \) is given by \(h = -16t^2 + 16t + 5 \).

What is the ball’s maximum height?

Exponential Functions

1. The graph of one of the solutions to the differential equation \(\frac{dy}{dx} = y/2 \) passes through the point (0,6). Determine the \(x \)-value at which this graph intersects the line \(y = 30 \).

2. Determine a formula for \(w \) as a function of \(s \) so that \(\frac{dw}{ds} = 10s \) and \(w(1) = 2 \).

3. Determine a formula for \(w \) as a function of \(s \) so that \(\frac{dw}{ds} = 10w \) and \(w(1) = 2 \).

4. The graph of a function \(y = f(x) \) has a \(y \)-intercept of 8 and has the property that the slope of the curve at every point \(P \) is twice the \(y \)-coordinate of \(P \). What is the equation of the curve?

Optimization

1. For the curve \(y = e^{4x} - 3e^{-2x} \), give the \(x \)-value at which the tangent line has the smallest slope.

2. Suppose that a function \(f(x) \) has first derivative given by \(f'(x) = -2e^{x/2}(x^2 - 7x + 14) \). Determine the largest open interval upon which the graph of \(f(x) \) is concave up.

3. A poster is to contain 1000 \(\text{cm}^2 \) of printed matter with margins of 4 cm each at top and bottom and 2 cm at each side. Find the overall dimensions if the total area of the poster is a minimum.
Evaluate the following limits

1. \(\lim_{x \to 1^+} \frac{\sin(5x)}{\ln x} \)
2. \(\lim_{x \to \infty} \frac{\ln x}{x^3} \)
3. \(\lim_{x \to 0^+} \left(\frac{2}{x} - \frac{10}{e^{5x} - 1} \right) \)
4. \(\lim_{x \to 1} \frac{x^2 + 3x - 4}{\sin(x - 1)} \)
5. \(\lim_{x \to \pi/4} \frac{4x - \pi}{4 \tan x} \)
6. \(\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^{3x} \)
7. \(\lim_{x \to 0^+} \frac{\ln(x^3 + 3x)}{\ln x} \)
8. \(\lim_{x \to \infty} x^{200} e^{-x} \)
9. \(\lim_{x \to 0} \frac{1 - x - e^{-x}}{x^2} \)
10. \(\lim_{x \to \infty} \frac{\sqrt{x}}{\ln x} \)
11. \(\lim_{x \to \infty} \left(1 - \frac{1}{2x} \right)^{3x} \)

Graphing, Min/Max

1. A function \(f(x) \) has the following second derivative.
 \(f''(x) = (x + 5)^2 - 4 \)
 What is the largest open interval upon which the graph of \(f(x) \) is concave down?

2. A function \(g(x) \) has the following derivative \(g'(x) = 5e^x(x - 1)^2(x - 2)^3(x - 3)^4 \).
 Determine the \(x \)-value for each local maximum and local minimum on the graph of \(g(x) \).

3. A function \(f(x) \) has first derivative \(f'(x) = e^{0.5x}(10x - 60) \).
 (a) Upon which interval is \(f(x) \) increasing?
 (b) Upon which interval is the graph of \(f(x) \) concave down?

4. Upon which interval is the graph of \(f(x) = 3x^4 - 20x^3 + 10 \) increasing?

5. A function \(f(x) \) has the following second derivative.
 \(f''(x) = 8e^x (x - 6)^2 (2x - 9) (x^2 + 25) \)
 Find the \(x \)-value for each inflection point on the graph of \(f(x) \).

6. Find the coordinates \((x, y)\) for the highest point on the graph of the function \(g(x) = 180x - 10e^{2x} \).