Math 241, Spring 2007, Merit Worksheet 7

1. Convert the equation into both cylindrical and spherical coordinates:
 (a) $x^2 + y^2 = 2x$
 (b) $z = x^2 - y^2$

2. Describe the graph of the equation:
 (a) $\rho = 4 \cos \phi$.
 (b) $\rho^3 - 4\rho = 0$.

3. Write an equation for the surface generated by revolving this curve around the indicated axis. Then sketch the surface:
 (a) The line $z = 3x$; the z-axis.
 (b) $x = 2y^2$; the x-axis.

4. Find the domains of the following functions (on \mathbb{R}^3):
 (a) $f(x, y, z) = \sqrt{x - y}$
 (b) $f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$
 (c) $f(x, y, z) = \frac{\log xyz}{xy^2 - xy}$
 (d) $f(x, y, z) = 4x^2y^4z^8 + z^2 + \sqrt{1 + x^2}$

 Find where the function in (a) has value 4. Find where the function in (b) has value 0. Find where the function in (d) has value -1.

5. The diagram below shows the level curves of a function.

What path will result in the greatest change in altitude? Which path is the steepest?

(a) A to B
(b) A to C
(c) A to D
(d) All the same.
6. Can you think of two or more surfaces which have the following as their level curves?

7. Sketch some typical level curves of the function $f(x, y) = y - x^2$.

8. What are the cylindrical coordinates of a sphere centred at $(0, 0, 2)$ of radius 3?

9. The angle between the vectors $-x\vec{i} - \vec{j} + \vec{k}$ and $x\vec{i} + 2\vec{j} - 3\vec{k}$:

 (a) is between 0 and 45 degrees
 (b) is between 45 and 90 degrees
 (c) is greater than 90 degrees
 (d) can be any of the above depending on the value of x.

10. Two vectors have a dot product of 14. To guarantee the dot product is equal to 28, you could:

 (a) double the angle between the vectors
 (b) double the length of both vectors
 (c) double the length of one vector
 (d) none of the above

Warm-Up Problems for Next Time

1. I’ll hold a review session/practice exam on Saturday at 3pm. It will be in the Merit Room.

2. Take the exam Monday at 9. Best of luck!