Math 241, Spring 2007, Merit Practice Exam 2

1. Let \(f(x, y, z) = \sqrt{xyz^3} \) and let \(P \) be the point \((2, 2, 2)\).

 (a) Find the maximum directional derivative of \(f \) at \(P \) and the direction in which it occurs.

 (b) Find the directional derivative of \(f \) at \(P \) in the direction of \(\vec{v} = 3\hat{i} + 12\hat{j} + 4\hat{k} \).

2. Find and classify the critical points of the function \(f(x, y) = 4xy - 2x^4 - y^2 \).

3. Find the first octant point on the surface \(xyz = 8 \) that is closest to \((0, 0, 0)\). (First octant = \(x, y, z \) all positive).

4. Find the equation of the tangent plane to the surface \(xy^2 + 2xyz - e^{xz} = 8 \) at the point \((1, 3, 0)\).

5. Use linear approximation to estimate \(\sqrt{(3.1)^2 + (4.2)^2 + (11.7)^2} \).

6. Find the highest point on the surface \(z = 4xy - x^4 - y^4 \).

7. Suppose that \(r = uvw - u^2 - v^2 - w^2 \), \(u = y + z \), \(v = x + z \), \(w = x + y \). Find \(\frac{\partial r}{\partial x} \).

8. Find \(\frac{\partial z}{\partial x} \) supposing that \(z = f(x, y) \) satisfies the equation \(xyz = \sin(x + y + z) \).

9. Show that the sphere \(x^2 + y^2 + z^2 = r^2 \) and the cone \(z^2 = a^2x^2 + b^2y^2 \) are orthogonal (that is, have perpendicular tangent planes) at every point of their intersection. (Fig. 12.8.12).

10. Find the maximum and minimum values that the function \(f(x, y, z) = 3x + 2y + z \) attains on the surface \(x^2 + y^2 + z^2 = 1 \).