A Hausdorff-Young Inequality for Locally Compact Quantum Groups

Tom Cooney

University of Illinois at Urbana-Champaign

October 3, 2009
The Hausdorff-Young Inequality for Locally Compact Abelian Groups

Let G be a locally compact abelian group.
Let \hat{G} be its dual group, i.e.,

$$\hat{G} = \{ \xi : G \to \mathbb{T} \mid \text{continuous homomorphisms} \},$$

- group operation is pointwise multiplication of functions
- $\xi_i \to \xi$ in \hat{G} if ξ_i converges uniformly to ξ on all compact subsets of G.
Let G be a locally compact abelian group. Let \hat{G} be its dual group, i.e.,

$$\hat{G} = \{ \xi : G \to \mathbb{T} \mid \text{continuous homomorphisms} \},$$

- group operation is pointwise multiplication of functions
- $\xi_i \to \xi$ in \hat{G} if ξ_i converges uniformly to ξ on all compact subsets of G.

The Hausdorff-Young Inequality for Locally Compact Abelian Groups
The Hausdorff-Young Inequality for Locally Compact Abelian Groups

Let \(G \) be a locally compact abelian group. Let \(\hat{G} \) be its dual group, i.e.,
\[
\hat{G} = \{ \xi : G \to \mathbb{T} \mid \text{continuous homomorphisms} \},
\]

- \(\hat{G} = G \) (Pontryagin Duality Theorem)
- Being locally compact groups, \(G \) and \(\hat{G} \) have Haar measures \(\mu \) and \(\hat{\mu} \).
The Hausdorff-Young Inequality for Locally Compact Abelian Groups

Let G be a locally compact abelian group. Let \hat{G} be its dual group, i.e.,

$$\hat{G} = \{ \xi : G \to \mathbb{T} \mid \text{continuous homomorphisms} \} ,$$

- $\hat{\hat{G}} = G$ (Pontryagin Duality Theorem)
- Being locally compact groups, G and \hat{G} have Haar measures μ and $\hat{\mu}$.
The Fourier Transform $\mathcal{F} : L_1(G) \to L_\infty(\hat{G})$ is defined by

$$\mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int_G f(s) \overline{\langle s, \xi \rangle} \, d\mu(s).$$

Clearly,

$$\|\hat{f}\|_\infty \leq \|f\|_1.$$

Also, for $f \in L_1(G) \cap L_2(G),$

$$\|\hat{f}\|_2 = \|f\|_2$$

and \mathcal{F} extends to a unitary $L_2(G) \to L_2(\hat{G})$.
By Riesz-Thorin / complex interpolation method, we have that for $1 \leq p \leq 2$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$
\mathcal{F} : L_p(G) \to L_q(\hat{G}) \\
\|\hat{f}\|_q \leq \|f\|_p.
$$

- Dual Group
- L_p-spaces
- Fourier Transform
- Complex Interpolation
Locally compact abelian group G

For $f \in L_1(G)$, the operator $\hat{f} \in L_\infty(\hat{G})$ acts by multiplication on $L_2(\hat{G})$:

$$\mathcal{F}(f)\hat{g} = \hat{f}\hat{g} = f \ast g.$$

Thus \mathcal{F} is unitarily equivalent to $\lambda(f)$, left convolution by f.

If G is not abelian, we define for $f \in L_1(G), g \in L_2(G)$,

$$\mathcal{F}(f)g = \lambda(f)g = f \ast g.$$

(Kunze, 1958)
The dual object is now the group von Neumann algebra

\[L(G) = \{ \lambda(f) \mid f \in L_1(G) \}'' \subset B(L_2(G)), \]

which we still denote by \(L_\infty(\hat{G}) \).

- \(L_p(\hat{G}) \) is now a non-commutative \(L_p \)-space.
M, von Neumann algebra, with a normal semifinite faithful weight φ.

- $\mathcal{N}_\varphi = \{ x \in M \mid \varphi(x^*x) < \infty \}$
- $\mathcal{M}_\varphi = \text{span}\{ y^*x \mid x, y \in \mathcal{N}_\varphi \}$
- $\Lambda : \mathcal{N}_\varphi \to H_\varphi$, $(\Lambda(x) \mid \Lambda(y)) = \varphi(y^*x)$
- M acting on H_φ:
 \[x\Lambda(y) = \Lambda(xy) \]
M, von Neumann algebra, with a normal semifinite faithful weight φ.

- $\mathcal{N}_\varphi = \{ x \in M \mid \varphi(x^*x) < \infty \}$
- $\mathcal{M}_\varphi = \text{span}\{ y^*x \mid x, y \in \mathcal{N}_\varphi \}$
- $\Lambda : \mathcal{N}_\varphi \to H_\varphi$, $(\Lambda(x) \mid \Lambda(y)) = \varphi(y^*x)$
- M acting on H_φ: $x\Lambda(y) = \Lambda(xy)$
Von Neumann Algebra Preliminaries

\(M \), von Neumann algebra, with a normal semifinite faithful weight \(\varphi \).

- S closure of the map \(\Lambda(x) \mapsto \Lambda(x^*) \), \(x \in \mathcal{M}_\varphi \)
- Polar Decomposition \(S = J\Delta^{1/2} \),
 \(J^2 = 1 \), \(\Delta > 0 \) is self-adjoint and invertible
- Modular automorphism group, \(\sigma^\varphi_t(x) = \Delta^{it}x\Delta^{-it} \), \(t \in \mathbb{R} \)
- \(x \in M \) analytic if \(t \mapsto \sigma^\varphi_t(x) \) extends to an entire function \(\mathbb{C} \to M \).
- Tomita algebra \(\mathcal{A}_0 \subset M \), \(\mathcal{A}'' = M \)
 \(\sigma_z(x) \in \mathcal{M}_\varphi \cap \mathcal{M}_\varphi^* \), \(\forall z \in \mathbb{C} \)
Connes / Hilsum construction
Isometrically isomorphic to Haagerup’s construction
M, a von Neumann algebra with a distinguished normal finite
semifinite weight φ.

Fix a nfs weight φ' on M' (e.g., $\varphi'(x) = \varphi(JxJ)$), $H = H_{\varphi'}$,

$$D(H, \varphi') = \left\{ \xi : \exists c \geq 0 \text{ s.t. } \|y\xi\|^2 \leq c\varphi'(y^*y), \forall y \in M' \right\}$$

For each $\xi \in D(H, \varphi')$,

$$\Lambda_{\varphi'}(y) \mapsto y\xi$$

extends to a bounded map $R_{\varphi'}(\xi) \in M$.

\[\text{8}\]
For each $\xi \in D(H, \varphi')$,

$$\Lambda_{\varphi'}(y) \mapsto y\xi$$

extends to a bounded map $R_{\varphi'}(\xi) \in M$.

Normal linear functional $\psi \in M_*$, spatial derivative $\frac{d\psi}{d\varphi'}$ is the unique, self-adjoint operator on H such that for $\xi \in D(H, \varphi')$,

$$\left\| \left(\frac{d\psi}{d\varphi'} \right)^{1/2} \xi \right\|^2 = \varphi(R_{\varphi'}(\xi)R_{\varphi'}(\xi)^*).$$
\[L_1(M, \varphi') = \{ \text{closed operators } T = u|T| \text{ such that} \]
\[u \in M, \exists \psi \in M^+_* \text{ such that } |T| = \frac{d\psi}{d\varphi'} \}
\[\|T\|_1 = \psi(1) = \|\psi\|_1 \]

\(L_1(M, \varphi') \) is isometrically isomorphic to \(M_* \).

\[L_p(M, \varphi') = \{ \text{closed operators } T = u|T| \text{ such that} \]
\[u \in M, \exists \psi \in M^+_* \text{ such that } |T|^p = \frac{d\psi}{d\varphi'} \}
\[\|T\|_p = \| |T|^p \|_1^{1/p} = \psi(1)^{1/p} \]
If φ is a fixed nfs weight on M, set

$$d = \frac{d\varphi}{d\varphi'}.$$

$$\left\{ d^{1/2p} y^* x d^{1/2p} \mid x, y \in \mathcal{M}_\varphi \right\}_{\|\cdot\|^p} = L_p(M, \varphi'), 1 \leq p < \infty$$

$$\left\{ x d^{1/p} \mid x \in \mathcal{M}_\varphi \right\}_{\|\cdot\|^p} = L_p(M, \varphi'), 2 \leq p < \infty$$
For $x \in \mathcal{A}_0$, $0 \leq \alpha \leq \frac{1}{2}$,

$$xd^\alpha = d^\alpha \sigma^\varphi_{i\alpha}(x).$$

$$d \longleftrightarrow \varphi$$

$$xd \longleftrightarrow \varphi(\cdot x)$$

$$d^{1/2} \sigma^\varphi_{i/2}(x)d^{1/2} \longleftrightarrow \psi$$ such that

$$\frac{d^\psi}{d^\varphi'} = d^{1/2} \sigma^\varphi_{i/2}(x)d^{1/2},$$

where $\psi = \varphi(\cdot x) \in L_1(\mathbb{G})$ satisfies

$$\langle \varphi(\cdot x), y \rangle = \varphi(yx),$$

for $y \in \mathcal{M}_\varphi$, $x \in \mathcal{A}_0^2$.
G, a (not necessarily abelian) locally compact group G, with modular function Δ.

What are $L_p(\hat{G}) = L_p(L(G))$?

We view Δ as an unbounded operator on $L_2(G)$:

$$(\Delta \xi)(t) = \Delta(t)\xi(t)$$

$\text{Domain}(\Delta) = \{ \xi \in L_2(G) \text{ such that } \Delta(t)\xi(t) \in L_2(G) \}$$
G, a (not necessarily abelian) locally compact group G, with modular function Δ.
What are $L_p(\hat{G}) = L_p(L(G))$?
We view Δ as an unbounded operator on $L_2(G)$:

$$(\Delta \xi)(t) = \Delta(t)\xi(t)$$

$\text{Domain}(\Delta) = \{\xi \in L_2(G) \text{ such that } \Delta(t)\xi(t) \in L_2(G)\}$
Hausdorff-Young for locally compact groups

G, a (not necessarily abelian) locally compact group G, with modular function Δ.

$$\hat{d} = \frac{d\hat{\varphi}}{d\hat{\varphi}'} = \Delta,$$

(where $\hat{\varphi}' = \hat{\varphi}(\hat{J} \cdot \hat{J})$, $\hat{\varphi}$ the Plancherel weight on $L(G)$

$$\hat{\varphi}(\lambda(f)^* \lambda(g)) = (g \mid f),$$

for $f, g \in L_1(G) \cap L_2(G)$.)
Theorem (Terp, 1980)

For $1 \leq p \leq 2$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L_p(G)$,

$$\mathcal{F}_p(f)\xi := f \ast \Delta^{1/q}\xi,$$

with domain $\{\xi \in L_2(G) \text{ such that } f \ast \Delta^{1/q}\xi \in L_2(G)\}$.

$$\mathcal{F}_p(f) \in L_q(\hat{G})$$

We could also write this as

$$\mathcal{F}_p(f) = \lambda(f)\hat{a}^{1/q}$$
Locally Compact Quantum Groups

A locally compact quantum group $G = (M, \Gamma, \varphi, \psi)$ consists of

- a von Neumann algebra M
- a normal, unital, $*$-homomorphism $\Gamma : M \to M \otimes M$ with
 \[
 (\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma
 \]
- a nsf weight φ on M such that for $\omega \in M_+^*, x \in M_\varphi^+$,
 \[
 \varphi((\omega \otimes \iota) \Gamma(x)) = \varphi(x) \omega(1)
 \]
- a nsf weight ψ on M such that for $\omega \in M_+^*, x \in M_\psi^+$,
 \[
 \psi((\iota \otimes \omega) \Gamma(x)) = \psi(x) \omega(1)
 \]

(Kustermans and Vaes)
A locally compact quantum group $G = (M, \Gamma, \varphi, \psi)$ consists of

- a von Neumann algebra M
- a normal, unital, $*$-homomorphism $\Gamma : M \to M \otimes M$ with
 \[(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma\]

\[\Gamma : L_\infty(G) \to L_\infty(G \times G)\]
\[\Gamma(f)(s, t) = f(st)\]
\[f((st)u) = f(s(tu))\]

- a nsf weight φ on M such that for $\omega \in M_\varphi^+, x \in M_\varphi^+$,
 \[\varphi((\omega \otimes \iota)\Gamma(x)) = \varphi(x)\omega(1)\]

- a nsf weight ψ on M such that for $\omega \in M_\psi^+, x \in M_\psi^+$,
 \[\psi((\iota \otimes \omega)\Gamma(x)) = \psi(x)\omega(1)\]
A locally compact quantum group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ consists of:

- a von Neumann algebra M
- a normal, unital, \ast-homomorphism $\Gamma : M \to M \otimes M$ with
 \[
 (\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma
 \]
- a nsf weight φ on M such that for $\omega \in M_\ast^+, x \in M_\varphi^+$,
 \[
 \varphi((\omega \otimes \iota)\Gamma(x)) = \varphi(x)\omega(1)
 \]
- a nsf weight ψ on M such that for $\omega \in M_\ast^+, x \in M_\psi^+$,
 \[
 \psi((\iota \otimes \omega)\Gamma(x)) = \psi(x)\omega(1)
 \]

(Kustermans and Vaes)
A locally compact quantum group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ consists of

- a von Neumann algebra M
- a normal, unital, \ast-homomorphism $\Gamma : M \to M \otimes M$ with
 \[(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma\]

- a nsf weight φ on M such that for $\omega \in M_\ast^+, x \in \mathcal{M}_\varphi^+$,
 \[\varphi((\omega \otimes \iota) \Gamma(x)) = \varphi(x) \omega(1)\]

- a nsf weight ψ on M such that for $\omega \in M_\ast^+, x \in \mathcal{M}_\psi^+$,
 \[\psi((\iota \otimes \omega) \Gamma(x)) = \psi(x) \omega(1)\]
A locally compact quantum group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ consists of
- a von Neumann algebra M
- a normal, unital, \ast-homomorphism $\Gamma : M \to M \otimes M$ with
 $$(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma$$
- a nzs weight φ on M such that for $\omega \in M_\ast^+$, $x \in M_\varphi^+$,
 $$\varphi((\omega \otimes \iota)\Gamma(x)) = \varphi(x)\omega(1)$$
- a nzs weight ψ on M such that for $\omega \in M_\ast^+$, $x \in M_\psi^+$,
 $$\psi((\iota \otimes \omega)\Gamma(x)) = \psi(x)\omega(1)$$
 (Kustermans and Vaes)
We will write $L_\infty(G)$ for M and $L_1(G)$ for M^*

Multiplicative unitary W on $H \otimes H$

$$W^*(\Lambda(x) \otimes \Lambda(y)) = (\Lambda \otimes \Lambda)(\Gamma(y)(x \otimes 1))$$

for all $x, y \in \mathcal{M}_\varphi$.

$$\Gamma(x) = W(1 \otimes x)W^*$$

Group case: W unitary on $L_2(G \times G)$

$$W(f \otimes g)(s, t) = f(s)g(s^{-1}t)$$
Fourier Representation of $L_1(G)$

Multiplication on $M_* = L_1(G)$:

$$\langle \omega_1 * \omega_2, x \rangle = \langle \omega_1 \otimes \omega_2, \Gamma(x) \rangle$$

Fourier Representation of $L_1(G)$:

$$\lambda(\omega) = (\omega \otimes \iota)(W), \quad \omega \in L_1(G)$$

$$\lambda(\omega_1 * \omega_2) = \lambda(\omega_1) \lambda(\omega_2)$$
Dual Locally Compact Quantum Group

Dual LCQG is
\[\hat{G} = (L_\infty(\hat{G}), \hat{\Gamma}, \hat{\phi}, \hat{\psi}), \]
where \(L_\infty(\hat{G}) = \lambda(L_1(G))'' \).

Multiplicative unitary \(\hat{W} = \Sigma W^* \Sigma \), where \(\Sigma(x \otimes y) = y \otimes x \),
\[\hat{\Gamma}(\hat{x}) = \Sigma W^*(\hat{x} \otimes 1) W \Sigma. \]

Pontryagin Duality Theorem:
\[\hat{\hat{G}} = G \]
Haar Weight on Dual LCQG

\[\mathcal{I} = \{ \omega \in L_1(\mathbb{G}) \mid \exists c \in \mathbb{R}^+ : |\omega(x^*)| \leq c \|\Lambda(x)\| \text{ for all } x \in \mathcal{M}_\varphi \}. \]

By the Riesz Representation Theorem, there then exists \(\xi(\omega) \in H \) such that

\[\omega(x^*) = (\xi(\omega) \mid \Lambda(x)), \quad x \in \mathcal{M}_\varphi. \]

\(\mathcal{I} \) is a left ideal in \(L_1(\mathbb{G}) \) with \(\lambda(\omega_1)\xi(\omega_2) = \xi(\omega_1 \ast \omega_2) \).
\(\lambda(\mathcal{I}) \) is a \(\sigma \)-strong*-norm core for the unique \(\sigma \)-strong*-norm closed linear map \(\hat{\Lambda} \) such that

\[
\hat{\Lambda}(\lambda(\omega)) = \xi(\omega).
\]

The dual weight \(\hat{\varphi} \) is the unique nsf weight on \(\hat{M} \) with the triple \((H, \iota, \hat{\Lambda}) \) as its GNS construction. Here \(\iota \) is the action

\[
\lambda(\omega_1)\xi(\omega_2) = \xi(\omega_1 \ast \omega_2).
\]

Note that \(\omega \in \mathcal{I} \) implies that \(\lambda(\omega) \in \mathcal{N}_{\hat{\varphi}} \).
For $p = 1$, the definition is clear: for $\omega \in L_1(\mathbb{G})$,

$$F_1(\omega) = \lambda(\omega) \in L_\infty(\hat{\mathbb{G}}),$$

and

$$\|F_1(\omega)\|_\infty = \|(\omega \otimes \iota)(W)\|_\infty \leq \|\omega\|_1.$$

Abusing notation, we can write (e.g., for $x \in \mathfrak{A}_0^2 \subset L_\infty(\mathbb{G})$):

$$F_1(\varphi(\cdot x)) = F_1(xd') = \lambda(\varphi(\cdot x))$$
\(p = 2: \) for \(x \in A_0^2 \subset L_\infty(G), \)

\[
\begin{align*}
H_\varphi & \sim L_2(G) \sim L_2(\hat{G}) \sim H_\hat{\varphi} \\
\Lambda(x) & \mapsto xd^{1/2} \mapsto \lambda(\varphi(\cdot x))d^{1/2} \mapsto \hat{\Lambda}(\lambda(\varphi(\cdot x)))
\end{align*}
\]

\[
\mathcal{F}_2(xd^{1/2}) = \lambda(\varphi(\cdot x))d^{1/2}
\]

and

\[
\|\mathcal{F}_2(xd^{1/2})\|_2 = \|\lambda(\varphi(\cdot x))d^{1/2}\|_2
\]
For $1 \leq p \leq 2$, $\frac{1}{p} + \frac{1}{q} = 1$, $x \in \mathbb{A}_0$,

\[
\mathcal{F}_p : L_p(G) \rightarrow L_q(\hat{G})
\]

\[
d^{1/2p} \sigma_{i/2p}(x) d^{1/2p} \mapsto \lambda(\varphi(\cdot x)) \hat{d}^{1/q}
\]

\[
xd^{1/p} \mapsto \lambda(\varphi(\cdot x)) \hat{d}^{1/q}
\]
With suitable embeddings into a Banach space, the complex interpolation method yields:

$$L_p(M) = (M, M_*)_{1/p}$$

If $x \in M \cap M_*$, what is the corresponding element of $L_p(M)$?

- **Kosaki**: For a state φ, $M \ni x \mapsto d^{\eta/2p} x d^{(1-\eta)/2p}$, $\eta \in [0, 1]$
- **Terp**: For a weight φ, $\mathcal{M}_\varphi \ni x \mapsto d^{1/2p} x d^{1/2p}$
- **Izumi**: Generalizes both Terp and Kosaki.
For each $\alpha \in \mathbb{C}$, we define

$$L_\alpha = \left\{ x \in M \mid \text{there exists a unique functional } \varphi_\alpha^x \in M_* \text{ s.t.} \right. $$

$$\varphi_\alpha^x(y^* z) = (xJ\Delta^{\alpha} \Lambda(y) \mid J\Delta^{-\alpha} \Lambda(z))$$

for all $y, z \in \mathcal{A}_0$.

This is a Banach space when considered with the norm

$$\|x\|_{L_\alpha} = \max\{\|x\|_\infty, \|\varphi_\alpha^x\|_1\},$$

where $\| \cdot \|_\infty$ and $\| \cdot \|_1$ are the norms on M and M_*, respectively.
For any $\alpha \in \mathbb{C}$, we have

$$A^2_0 \subset L_\alpha$$

and for $y, z \in A_0$, we have

$$\varphi^\alpha_{y^*z} = \omega J\Delta^{-\bar{\alpha}} \Lambda(y), J\Delta^\alpha \Lambda(z)$$

where $\omega_{\xi, \eta}$ is the functional $(\cdot \xi | \eta)$.
The maps

\[i_\alpha : L_\alpha \rightarrow M, \ x \mapsto x \text{ and } j_\alpha : L_\alpha \rightarrow M^*_\alpha, \ x \mapsto \varphi^\alpha_x, \]

are norm-decreasing and injective. The set \(i_\alpha(\mathbb{A}_0^2) \) is \(\sigma \)-weakly dense in \(M \) and the set \(j_\alpha(\mathbb{A}_0^2) \) is norm dense in \(M^*_\alpha \).
Izumi’s interpolation result when $\alpha = -1/2$
Hausdorff-Young Inequality for LCQG

- Holds for $F_1 : L_1(G) \to L_\infty(\hat{G})$.
- Holds for $F_2 : L_2(G) \to L_2(\hat{G})$.
- Do F_1 and F_2 agree on $L_1(G) \cap L_2(G)$?
- Check F_1 and F_2 well-defined and agree on images of $x \in \mathcal{A}^2_0$ in $L^*_{1/2}$.
- $L_1(G) \cap L_2(G) \subset L^*_{1/2}$
- $L_2(\hat{G}) \cap L_\infty(\hat{G}) \subset \hat{L}^*_{1/2}$
- Approximation arguments
- Interpolation
Theorem (C)

Locally compact quantum group G, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\mathcal{F}_p : L_p(G) \rightarrow L_q(\hat{G})$$

$$xd^{1/p} \mapsto \lambda(\varphi(\cdot x))\hat{d}^{1/q}$$

$$\|\mathcal{F}_p(xd^{1/p})\|_q \leq \|xd^{1/p}\|_p$$
Thanks!!

Thanks for your attention!

A Hausdorff-Young Inequality for Locally Compact Quantum Groups

Tom Cooney

University of Illinois at Urbana-Champaign

October 3, 2009