Math 241 Fall 2006, Merit Worksheet 16

1. Find the first octant point \(P(x, y, z) \) on the plane \(2x + 3y + z = 49 \) which is closest to the point \(Q(7, -7, 0) \).

2. Find the maximum possible product of three positive numbers whose sum is 120.

3. Use the example \(x^2 + y^2 = 1 \) to explain (in detail) the implicit function theorem.

4. Use implicit differentiation to find \(z_x \) and \(z_y \) where \(z \) is the function implicitly defined by \(x - yz + xy^2z^3 = 1 \) at the point \((1, 1, 1) \).

5. A particle \(Q \) moving through space is being studied. Let \(s \) denote the distance that \(Q \) has travelled with respect to some starting point. (We can think of distance as arc length on the curve determined by \(Q \).)

 (a) We know that \(S \) depends on two factors \(X \) and \(Y \).

 (b) We know that \(X \) and \(Y \) vary over time \(t \) in years according to the formulae \(X = t^2 - 1 \) and \(Y = \ln t \).

 (c) The changes in \(s \) with respect to \(X \) and \(Y \) are both constants, \(a \) and \(b \) respectively.

 What is the speed of the particle \(Q \), in terms of \(a \) and \(b \), after 20 years?

6. Suppose \(R = f(u, v, w), \) \(u = g(x, y, z), \) \(v = h(x, y, z) \) and \(w = j(x, y, z) \). In the chain rule, how many terms do you have to add up to find the partial derivative with respect to \(x \)?

7. Suppose \(w = \ln(x^2 + y^2 + z^2), \) where \(x = s - t, \) \(y = s + t \) and \(z = 2\sqrt{st}. \) Find \(\frac{\partial w}{\partial s} \) and \(\frac{\partial w}{\partial t}. \)

8. If \(g(s, t) = f(s^2 - t^2, t^2 - s^2) \) and \(f \) is differentiable, show that \(g \) satisfies the partial differential equation

\[
\frac{t}{\partial s} + s \frac{\partial g}{\partial t} = 0
\]
9. The radius of a right circular cylinder is decreasing at a rate of 1.5 cm/s while its height is increasing at a rate of 4 cm/s. At what rate is the volume of the cylinder changing when the radius is 50 cm and the height is 100 cm? The surface area?

10. If $f(u, v) = 2u^2v$ and $u(x, y) = x + 2y$ and $v = x^2 - y$, calculate f_{xx}.

11. Change variables in the partial differential equation $z_{xx} - z_{yy} - z_{xy} = 0$ if $u = x^2 + y^2$, $v = 2xy$.

Warm-Up for Next Time

1. Find the gradient vector to the function $f(x, y, z) = y^2 - z^2$ at the point $P(17, 3, 2)$.