Math 242, Merit Review Questions for Hour Exam 3, Fall 2006

Usual warnings apply: I am not writing the exam and I have not seen the exam. I would also suggest looking at the homework problems, especially the extra problems posted online. You should also look at the list of topics for exam 3 that Professor Nikolaev has posted online. Tuesday morning will be a review session for the exam.

1. Find the absolute maximum and minimum values that the function \(f(x, y, z) = x^2 - yz \) takes on the region \(x^2 + y^2 + z^2 \leq 1 \).

2. Evaluate the integral
 \[
 \int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{ye^{x^2}}{x^3} \, dx \, dy.
 \]

3. Find the area of that section of the saddle-shaped surface \(z = xy \) inside the cylinder \(x^2 + y^2 = 1 \).

4. Substitute \(u = xy \) and \(v = xy^3 \) to find the area of the first quadrant region bounded by the curves \(xy = 2 \), \(xy = 4 \), \(xy^3 = 3 \), \(xy^3 = 6 \). (Fig. 13.9.8, p.1010)

5. Convert to rectangular coordinates:
 \[
 \int_{\pi/2}^{3\pi/2} \int_{0}^{1} \frac{1}{r} \, dr \, d\theta.
 \]

6. Convert to cylindrical coordinates:
 \[
 \int_{1}^{5} \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} xy^2 \, dy \, dx.
 \]

7. Set up the integrals but do not evaluate:
 Consider a lamina that occupies the region \(D \) bounded by the parabola \(x = 1 - y^2 \) and the coordinate axes in the first quadrant with density function \(\delta(x, y) = y \).

 (a) Find the mass of the lamina.
 (b) Find the centroid.
 (c) Find the moments of inertia around the \(x \)- and \(y \)-axes.

8. Set up but do not evaluate the triple integrals:
(a) the triple integral for the volume of the solid bounded by the planes \(z = 0, z = 20 - x \) and the cylinder \(x^2 + y^2 = 25 \).

(b) the mass and centroid of a tetrahedron with density \(\delta(x, y, z) = xy + z^2 \), where the tetrahedron lies in the first octant, bounded by the coordinate axes and the plane \(x + y + z = 1 \).

(c) the triple integral for the volume of the solid bounded by \(z = x^2 \), \(y + z = 4 \), \(y = 0 \), \(z = 0 \).

9. Calculate the divergence and curl of the vector field:

\[
\mathbf{F}(x, y, z) = xy^2 \mathbf{i} + yz^2 \mathbf{j} + zx^2 \mathbf{k}.
\]

10. Evaluate the line integral along the curve \(y = x^3 \) as \(x \) goes from \(x = 3 \) to \(x = 0 \).

\[
\int_C xy^2 \, dx + xy \, dy.
\]

11. Evaluate the arclength integral along the curve \(y = x^3 \) as \(x \) goes from \(x = 3 \) to \(x = 0 \).

\[
\int_C y \, ds.
\]

12. Evaluate

\[
\int_C F_t \, ds
\]

where \(\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} + z\mathbf{k} \) and \(C \) is the curve parametrized by \(x = \sin t, y = \cos t, z = 2t \), for \(0 \leq t \leq \pi \).