ON THE LARGEST k-PRIMITIVE SUBSET OF $[1,n]$

Sujith Vijay
Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA.
sujith@math.rutgers.edu

Received: 6/28/04, Revised: 1/24/06, Accepted: 1/27/06, Published: 2/1/06

Abstract

We derive bounds on the size of the largest subset of $\{1, 2, \ldots, n\}$ such that no element divides k others, for $k \geq 3$ and sufficiently large n.

1. Introduction

Let $S \subseteq \mathbb{N}$ be a finite set of positive integers. We say that S is k-primitive if no member of S divides k other elements in S.

Let $f_k(n)$ denote the size of the largest k-primitive subset of $[1, n]$. It is well-known that $f_1(n) = \left\lceil \frac{n}{2} \right\rceil$. Lebensold [2] showed that, if n is sufficiently large,

$$(0.672...) < \frac{f_2(n)}{n} < (0.673...)$$

In this article, we show that, for $k \geq 3$ and sufficiently large n,

$$\frac{k}{k+1} + \frac{1}{8k^4} < \frac{f_k(n)}{n} < 1 - \frac{1}{8k \ln k}$$

Moreover, given $\epsilon > 0$, there exists $k_0(\epsilon)$ such that for $k \geq k_0(\epsilon)$ and $n \geq n_0(k)$,

$$\frac{k}{k+1} + \frac{1 - \epsilon}{k^4} < \frac{f_k(n)}{n} < 1 - \frac{1}{(2e^\gamma + \epsilon)k \ln k}$$

2. The Lower Bound

For $\alpha \in \mathbb{R}$ and $S \subseteq \mathbb{N}$, we shall write αS to denote the set $\{\alpha x : x \in S\}$. We begin by deriving a lower bound on $f_k(n)$.
Define $S_0 = \{x : (k+1)x > n\}$, with $|S_0| = \frac{nk}{k+1} + O(1)$. Clearly, S_0 is k-primitive. Let $S_1 = \{x : \frac{n}{k+3} < x < \frac{nk}{(k+1)^2}, k(k+1)|x\}$. Observe that any element in S_1 has exactly $k + 1$ other multiples in $[1, n]$. Let $S_2 = (k+1)S_1$, $S_3 = (k+2)S_1$ and $S' = (S_0 \cup S_1) \setminus (S_2 \cup S_3)$. Note that S' is k-primitive.

Let $S_4 = (k+1)^{-1}S_3$ and and $S_5 = k^{-1}S_2$. Any element in $S_4 \cup S_5$ has at most k other multiples in $[1, n]$. By construction, at least one of these will not occur in S'. Furthermore, no multiple of an element in S_4, except possibly itself, occurs in S_5 and vice versa. It follows that $S \geq S' \cup S_4 \cup S_5$ is k-primitive.

Note that

$$|S_1| = \frac{n(k-1)}{k(k+1)^3(k+3)} + O(1), \text{ for } 1 \leq i \leq 5$$

Furthermore,

$$S_i \cap S_j = \emptyset \text{ for } 1 \leq i < j \leq 5 \text{ except when } i = 4 \text{ and } j = 5.$$

Finally,

$$|S_4 \cap S_5| = \frac{n(k^3 - 4k - 1)}{k^2(k+1)^5(k+2)(k+3)} + O(1)$$

Thus we have,

$$|S| = |S_0| + |S_1| - |S_4 \cap S_5| > n \left(\frac{k}{k+1} + \frac{1}{8k^4} \right)$$

Note that for sufficiently large k,

$$|S| > n \left(\frac{k}{k+1} + \frac{1-\epsilon}{k^4} \right)$$

3. The Upper Bound

Let S be a k-primitive subset of $[1, n]$. For a positive integer $x \leq n/(k+1)$, let $C_x = \{x, 2x, \ldots, (k+1)x\}$ be the chain containing x. Observe that $C_x \subseteq [1, n]$ and $|S \cap C_x| \leq k$. Thus if $C_{x_1}, C_{x_2}, \ldots, C_{x_m}$ are pairwise disjoint, $|S| \leq n - m$.

Let $X = \{x : \frac{n}{2(k+1)} < x < \frac{n}{k+1}, x \text{ has no prime factor in } [2, k]\}$. Thus if $r \leq k$ and $x \in X$, we have $(r, x) = 1$.

We claim that \(\{C_{x_m}\}, x_m \in X \) is a pairwise disjoint collection.

Suppose not. Let \(rx_i = sx_j, x_i \neq x_j, 1 \leq r < s \leq k + 1 \). Since \(r \leq k \) and \(x_j \in X \), we have \((r, x_j) = 1 \). Thus \(x_j | x_i \), i.e., \(x_i \geq 2x_j > \frac{n}{k+1} \), which is impossible. This proves our claim.

Let \(P_k \) denote the product of the prime numbers not exceeding \(k \). The easy estimate \(P_k < 3^k \), together with an application of the Chinese Remainder Theorem, yields

\[
|X| = \frac{n}{2(k+1)} \prod_{p \leq k} \left(1 - \frac{1}{p} \right) + O(3^k)
\]

By Mertens’s theorem,

\[
\prod_{p \leq x} \left(1 - \frac{1}{p} \right) \geq \frac{1}{e^{\gamma+\delta} \ln x} \quad \text{where} \quad |\delta| < \frac{4}{\ln(x+1)} + \frac{1}{2x} + \frac{2}{x \ln x}
\]

Computations for a bounded initial segment (suffices to consider \(x < 12000 \)) establish that

\[
\prod_{p \leq x} \left(1 - \frac{1}{p} \right) \geq \frac{\ln 3}{3 \ln x} \quad \text{for} \quad x \geq 3
\]

Therefore, we obtain, for \(k \geq 3 \),

\[
|X| > \frac{n}{8k \ln k}
\]

and for sufficiently large \(k \),

\[
|X| > \frac{n}{(2e^\gamma + e)k \ln k}
\]

References

