Extra Set Paradoxes

Sujith Vijay

We consider hypergraph games where two players alternately choose elements of the vertex set, the winner being the first to occupy an entire hyperedge. For example, the popular game of Tic-Tac-Toe corresponds to the vertex set \(\{1, 2, \ldots, 9\} \) and edge set \(\{(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 5, 9), (3, 5, 7)\} \). Let \(P_1 \) and \(P_2 \) denote the first and second player respectively. It can be shown by a strategy stealing argument that \(P_2 \) cannot force a win. We give two examples of the so-called extra set paradox for 3-uniform hypergraphs, where \(P_1 \) can win on the entire hypergraph, but not on a proper (edge or vertex induced) subgraph. Our example for the edge-induced case is minimal, and the existence of the vertex-induced case for uniform hypergraphs was an open question, albeit widely believed.
Consider the hypergraph $H = (V, E)$ where $V = \{1, 2, \ldots, 7\}$ and $E = \{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 5, 6), (3, 5, 7)\}$.

![Hypergraph diagram]

P_1 can force a win on this hypergraph as follows:

Move 1: P_1 picks 1. P_2 is forced to pick 2, for otherwise P_1 will pick 2 and seal the game, since at most two edges can be blocked in two moves.

Move 2: P_1 picks 3. P_2 is forced to pick 4 (immediate threat).

Move 3: P_1 picks 5. P_2 is forced to pick 6 (immediate threat).

Move 4: P_1 picks 7 and wins.

Now, let $E' = E \cup \{(2, 4, 6)\}$. We claim that the game played on $H' = (V, E')$ is a draw with optimal play.

In order to have any chance of winning, P_1 must pick vertex 1 in the first move. P_2 responds by picking 2.

If P_1 picks 3 (respectively 5) in Move 2, P_2 picks 4 (respectively 6). P_1 is then forced to pick 6 (respectively 4) and P_2 picks 5 (respectively 3), forcing a draw.

If P_1 picks 4 (respectively 6) in Move 2, P_2 picks 3 (respectively 5), forcing a draw. Clearly, picking 7 in the second move makes a draw easier for P_2.

Thus P_2 can always force a draw. Furthermore, it is clear that any such example requires at least seven vertices, since extra edges cannot prevent a three-move win.
Now we give an example of the induced extra set paradox for uniform hypergraphs.

Consider the hypergraph $H'' = (V'', E'')$ where $V'' = \{1, 2, \ldots, 9\}$ and $E'' = \{(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 5, 6), (3, 5, 7), (2, 4, 8), (2, 6, 9)\}.$

As we have already seen, the first player can force a win on the subgraph induced by the vertex set $\{1, 2, \ldots, 7\}$. We claim that the game on the entire hypergraph is a draw with optimal play.

In order to have any chance of winning, P_1 must pick vertex 1 in the first move. P_2 responds by picking 2.

If P_1 picks 3 (respectively 5) in Move 2, P_2 picks 4 (respectively 6). P_1 is then forced to pick 8 (respectively 9) and P_2 picks 5 (respectively 3), forcing a draw.

If P_1 picks 4 (respectively 6) in Move 2, P_2 picks 3 (respectively 5), forcing a draw. Clearly, picking 7, 8 or 9 in the second move makes a draw easier for P_2.

We conclude that P_2 can always force a draw.