Closest Approximations to Real Numbers

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, New Delhi - 110016, India
e-mail: atripath@maths.iitd.ac.in

Sujith Vijay
Department of Mathematics, Rutgers University - New Brunswick, Piscataway, NJ 08854, U.S.A.
e-mail: sujith@math.rutgers.edu

Abstract

A rational number p/q is said to be a closest approximation to a given real number α provided it is closer to α than any other rational number with denominator at most q. We determine the sequence of closest approximations to α, giving our answer in terms of the simple continued fraction expansion of α.

Keywords: Continued fraction, convergents, best approximations, closest approximations
AMS Subject Classification (2000): 11J

The study of approximations of real numbers by rationals is an integral part of the Theory of Numbers. The central theme to this study is the representation of real numbers by their simple continued fraction, and the simplest sequence of rational numbers in the sense of size of denominators is obtained by looking at the sequence of convergents to this continued fraction expansion.

A systematic and elementary introduction to the theory of continued fractions is usually available in most books on Number Theory. For the sake of completeness, we introduce some elementary properties of simple continued fractions. All these and more can be found in [3] or in [4], for instance.

Let α denote a real number with continued fraction expansion

$$\alpha = < a_0, a_1, \ldots, a_n, \ldots >.$$

Such an expression for α is unique except for the case when α is a rational number. When α is rational, such an expansion is necessarily finite, and since a_n may be replaced by $< a_n - 1, 1 >$, unique only provided we insist that the last term a_n be chosen greater than 1 always.
The numerators and denominators of rational numbers

\[
\frac{p_n}{q_n} \doteq <a_0, a_1, \ldots, a_n>,
\]

termed the *convergents* to \(\alpha \), satisfy the second order recurrence

\[
u_n = a_n u_{n-1} + u_{n-2} \quad \forall \ n \geq 0,
\]

with \(p_{-2} = 0 = q_{-1} \) and \(p_{-1} = 1 = q_{-2} \). In particular, we have

\[
\alpha = \frac{\alpha_{n+1} p_n + p_{n-1}}{\alpha_{n+1} q_n + q_{n-1}} \quad \forall \ n \geq -1,
\]

where \(\alpha_n \doteq <a_n, a_{n+1}, \ldots> \).

From the identity

\[
p_n q_{n-1} - p_{n-1} q_n = (-1)^n - 1 \quad \forall \ n \geq -1,
\]

one can now derive

\[
\alpha - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n (\alpha_{n+1} q_n + q_{n-1})} \quad \forall \ n \geq 0,
\]

which justify the terminology of convergent used for the rational numbers \(p_n/q_n \).

The convergents turn out to be the only *best approximations* to \(\alpha \) (see [1]). A reduced rational number \(p/q \) is a best approximation to \(\alpha \) provided

\[
|| q\alpha - p || = || q\alpha || \leq || q'\alpha || \quad \forall \ 1 \leq q' \leq q,
\]

where \(||x|| \) is the distance from \(x \) to its nearest integer.

Therefore, if \(p/q \) is a best approximation to \(\alpha \), then \(p \) is the integer closest to \(q\alpha \) and if \(p' \) is any integer,

\[
\left| \alpha - \frac{p}{q} \right| \leq \left| \alpha - \frac{p'}{q'} \right| \quad \forall \ 1 \leq q' \leq q
\]

Let \(Q \) be any positive integer. It follows from (5) that the best approximation among all rational numbers with denominators not exceeding \(Q \) is given by the convergent \(p_n/q_n \) such that \(q_n \leq Q < q_{n+1} \). However, if we look to minimize \(|\alpha - p/q| \) among all rationals with denominators not exceeding \(Q \), the answer may not always be found among the convergents; see [3], for instance. The purpose of this note is to address this problem.

Definition: Let \(\alpha \in \mathbb{R} \). A reduced rational number \(p/q \) is said to be a *closest approximation* to \(\alpha \) if

\[
\left| \alpha - \frac{p}{q} \right| < \left| \alpha - \frac{p'}{q'} \right| \quad \forall \ 1 \leq q' \leq q, \quad \frac{p'}{q'} \neq \frac{p}{q}.
\]

Thus, if we let

\[
d_\alpha(q) \doteq \min_{p \in \mathbb{Z}} \left| \alpha - \frac{p}{q} \right|
\]

\(p/q \) is a closest approximation to \(\alpha \) provided \(d_\alpha(q) < d_\alpha(q') \) for \(1 \leq q' < q \) for \(q > 1 \).
Observe that for fixed $\alpha \in \mathbb{R}$ and a fixed $q \in \mathbb{N}$, the integer p such that $d_{\alpha}(q) = |\alpha - p/q| = ||q\alpha||/q$ is the integer closest $q\alpha$, which we call the α-pair of q. Note that p is the α-pair of q if and only if $2|q\alpha - p| \leq 1$.

The identity
\[
\frac{ap_n + p_{n-1}}{aq_n + q_{n-1}} - \frac{bp_n + p_{n-1}}{bq_n + q_{n-1}} = \frac{(-1)^{n-1}(a - b)}{(aq_n + q_{n-1})(bq_n + q_{n-1})}
\]
(7)
shows that $\gcd(ap_n + p_{n-1},aq_n + q_{n-1}) = 1$ for all integers a.

Moreover, for any n and a ($0 \leq a \leq a_{n+1}$), the α-pair of $q = aq_n + q_{n-1}$ is $p = ap_n + p_{n-1}$ since
\[
2|q\alpha - p| = 2q \frac{\alpha_{n+1}p_n + p_{n-1}}{\alpha_{n+1}q_n + q_{n-1}} - \frac{ap_n + p_{n-1}}{aq_n + q_{n-1}} = 2 \frac{|\alpha_{n+1} - a|}{\alpha'_{n+1}} < 1,
\]
where $\alpha' = \alpha_{n+1}q_{n-1} + q_{n-2}$, unless $q_n = 1$. However, if $q_n = 1$, $p_n = a_0$, $q_n - 1 = 0$ and $p_{n-1} = 1$, and the α-pair of $q = a$ is $p = aa_0 + 1$.

Suppose Q is any positive integer. Choose the largest n such that $q_n \leq Q$, and set $k \div [(Q - q_{n-1})/q_n]$. Then $0 \leq k < a_{n+1}$ and
\[
kq_n + q_{n-1} \leq Q < (k + 1)q_n + q_{n-1}
\]
(8)
We claim that any rational number p/q between p_n/q_n and $(kp_n + p_{n-1})/(kq_n + q_{n-1})$ must have denominator $q > Q$.

From (4) and (7) we see that the numerator of
\[
\left(\alpha - \frac{p_n}{q_n}\right)\left(\alpha - \frac{kp_n + p_{n-1}}{kq_n + q_{n-1}}\right)
\]
equals $-(\alpha_{n+1} - k) < 0$, since $k < a_{n+1} \leq \alpha_{n+1}$. Therefore, α lies between p_n/q_n and $(kp_n + p_{n-1})/(kq_n + q_{n-1})$. Moreover,
\[
\left|\frac{kp_n + p_{n-1}}{kq_n + q_{n-1}} - \frac{p_n}{q_n}\right| = \frac{1}{q_n(kq_n + q_{n-1})},
\]
(9)
whereas from (4) and (7) again we have
\[
\left|\frac{kp_n + p_{n-1}}{kq_n + q_{n-1}} - \frac{p_n}{q_n}\right| = \left|\frac{p}{q} - \frac{p_n}{q_n}\right| + \left|\frac{p}{q} - \frac{kp_n + p_{n-1}}{kq_n + q_{n-1}}\right| \geq 1 \frac{1}{qq_n} + 1 \frac{1}{q(kq_n + q_{n-1})} = (k + 1)q_n + q_{n-1} = q_n(kq_n + q_{n-1})
\]
(10)
Finally, from (8), (9) and (10), we arrive at $q > Q$. This shows that the closest approximation to α must always be one of p_n/q_n and $(kp_n + p_{n-1})/(kq_n + q_{n-1})$, and it remains to determine which of these is the closest approximation.

From (7), we see that the sequence $\{\frac{ap_n + p_{n-1}}{aq_n + q_{n-1}}\}_{a=0}^{a_{n+1}}$ is monotonic, and since p_n/q_n is closer to α than p_{n-1}/q_{n-1}, we have
\[
d_{\alpha}((a + 1)q_n + q_{n-1}) < d_{\alpha}(aq_n + q_{n-1}) \quad \forall \ 0 \leq a \leq a_{n+1} - 1
\]
(11)
Now, since \(d_\alpha(q_{n+1}) < d_\alpha(q_n) < d_\alpha(q_{n-1}) \), there is a \textit{smallest} \(a \) between 0 and \(a_{n+1} \) for which
\[\frac{\alpha_{n+1} - a}{(aq_n + q_{n-1})} < \frac{1}{q_n(aq_n + q_{n+1})}, \]

or
\[\frac{\alpha_{n+1} - a}{aq_n + q_{n-1}} < \frac{1}{q_n}, \]

which is the same as \((\alpha_{n+1} - 2a)q_n < q_{n-1}\). The last inequality can be written as
\[2a > \alpha_{n+1} - \frac{q_{n-1}}{q_n} = a_{n+1} + < 0, a_{n+2}, a_{n+3}, \ldots > - < 0, a_n, a_{n-1}, \ldots, a_1 >, \]

so that the smallest such \(a \) equals \([a_{n+1}/2]\) \textit{unless} \(a_{n+1} \) is even and
\[< 0, a_{n+2}, a_{n+3}, \ldots > \geq < 0, a_n, a_{n-1}, \ldots, a_1 >, \]

in which case it equals \((a_{n+1} + 2)/2\).

We have thus proved the

\textbf{Theorem:} Let \(\alpha = < a_0, a_1, \ldots, a_n, \ldots > \). Then \(p/q \) is a closest approximation to \(\alpha \) if and only if \(p/q \) equals \((a_0 + [1/a_1])/1\) or is of the form \((a_{pn} + p_{n-1})/(aq_n + q_{n-1})\), where \(n \geq 0 \) and
\[\begin{cases}
(a_{n+1} + 2)/2 \leq a \leq a_{n+1} & \text{if } a_{n+1} \text{ is even and } < 0, a_{n+2}, a_{n+3}, \ldots > \geq < 0, a_n, a_{n-1}, \ldots, a_1 >; \\
\lfloor a_{n+1}/2 \rfloor \leq a \leq a_{n+1} & \text{otherwise.}
\end{cases} \]

There is a simple way to check whether or not the inequality
\[< 0, a_{n+2}, a_{n+3}, \ldots > \geq < 0, a_n, a_{n-1}, \ldots, a_1 > \]

holds. Suppose \(a_{n+1+i} = a_{n+1-i} \) for all \(i \) with \(0 \leq i \leq k - 1 \) but \(a_{n+1+k} \neq a_{n+1-k} \). Then the given inequality holds precisely when \(k \) is \textit{even} and \(a_{n+1+k} \geq a_{n+1-k} \) or when \(k \) is \textit{odd} and \(a_{n+1+k} \leq a_{n+1-k} \). All this can be written more briefly as equivalent to \((-1)^k(a_{n+1+k} - a_{n+1-k}) \geq 0\).

We close this note with a table of \textit{best} and of \textit{closest} approximations to \(\pi \).
Closest and Best Approximations to \(\pi = < 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, \ldots > \)

| \(n \) | \(a_{n+1} \) | \(p_n \) | \(q_n \) | \(\frac{p}{(a_{p_n} + p_{n-1})} \) | \(\frac{q}{(a_{q_n} + q_{n-1})} \) | \(||q\pi|| \) | \(\frac{1}{q} ||q\pi|| \) |
|---|---|---|---|---|---|---|---|
| -1 | 3 | 1 | 0 | 3 | 1 | 0.141592653590... | 0.141592653590... |
| 0 | 7 | 3 | 1 | 4 | 13 | 4 | 0.108407346410... | 0.108407346410... |
| 0 | 7 | 3 | 1 | 5 | 16 | 5 | 0.058407346410... | 0.058407346410... |
| 0 | 7 | 3 | 1 | 6 | 19 | 6 | 0.025074013077... | 0.025074013077... |
| 0 | 7 | 3 | 1 | 7 | 22 | 7 | 0.008851424871... | 0.008851424871... |
| 1 | 15 | 22 | 7 | 8 | 179 | 57 | 0.001264489267... | 0.001264489267... |
| 1 | 15 | 22 | 7 | 9 | 201 | 64 | 0.000967653590... | 0.000967653590... |
| 1 | 15 | 22 | 7 | 10 | 223 | 71 | 0.000747583167... | 0.000747583167... |
| 1 | 15 | 22 | 7 | 11 | 245 | 78 | 0.000567012564... | 0.000567012564... |
| 1 | 15 | 22 | 7 | 12 | 267 | 85 | 0.000416183002... | 0.000416183002... |
| 1 | 15 | 22 | 7 | 13 | 289 | 92 | 0.000288305764... | 0.000288305764... |
| 1 | 15 | 22 | 7 | 14 | 311 | 99 | 0.000178512176... | 0.000178512176... |
| 1 | 15 | 22 | 7 | 15 | 333 | 106 | 0.000083219628... | 0.000083219628... |
| 2 | 1 | 333 | 106 | 1 | 355 | 113 | 0.00000266764... | 0.00000266764... |
| 3 | 292 | 355 | 113 | 146 | 52163 | 16604 | 0.000000266213... | 0.000000266213... |
| 3 | 292 | 355 | 113 | 147 | 52518 | 16717 | 0.000000262611... | 0.000000262611... |
| 3 | 292 | 355 | 113 | 148 | 52873 | 16830 | 0.000000259056... | 0.000000259056... |
| 3 | 292 | 355 | 113 | 149 | 53228 | 16943 | 0.000000255549... | 0.000000255549... |
| 3 | 292 | 355 | 113 | 150 | 53583 | 17056 | 0.000000252089... | 0.000000252089... |
| 3 | 292 | 355 | 113 | 151 | | | 0.000000000000... | 0.000000000000... |
| 3 | 292 | 355 | 113 | 288 | 102573 | 32650 | 0.00000004279... | 0.00000004279... |
| 3 | 292 | 355 | 113 | 289 | 102928 | 32763 | 0.00000003344... | 0.00000003344... |
| 3 | 292 | 355 | 113 | 290 | 103283 | 32876 | 0.00000002416... | 0.00000002416... |
| 3 | 292 | 355 | 113 | 291 | 103638 | 32989 | 0.00000001494... | 0.00000001494... |
| 3 | 292 | 355 | 113 | 292 | 103993 | 33102 | 0.00000000578... | 0.00000000578... |

Acknowledgement: The authors are grateful to the referee for his comments and suggestions.

References

