Generalized Balloons and Chinese Postman Problems in Regular Graphs

Suil O and Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign

2009 SIAM Annual Meeting
Table of Contents

Motivation and Questions

Previous Results using Balloons

Smallest Matching Number and Edge-Connectivity

Chinese Postman Problem
In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching.
Motivation and Questions

In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching. If there are cut-edges in a cubic graph, then what happens?
In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching.
If there are cut-edges in a cubic graph, then what happens?
More generally, we consider connected \((2r + 1)\)-regular graphs.
In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching.
If there are cut-edges in a cubic graph, then what happens?
More generally, we consider connected \((2r + 1)\)-regular graphs.

1) **How many cut-edges can a connected \((2r + 1)\)-regular graph with \(n\) vertices have?**
Motivation and Questions

In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching. If there are cut-edges in a cubic graph, then what happens? More generally, we consider connected \((2r + 1)\)-regular graphs.

1) **How many cut-edges** can a connected \((2r + 1)\)-regular graph with \(n\) vertices have?
2) **How small** can the **matching number** \(\alpha'(G)\) be in a connected \((2r + 1)\)-regular graph with \(n\) vertices?
In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching.
If there are cut-edges in a cubic graph, then what happens?
More generally, we consider connected \((2r + 1)\)-regular graphs.

1) **How many cut-edges** can a connected \((2r + 1)\)-regular graph with \(n\) vertices have?
2) How small can the **matching number** \(\alpha'(G)\) be in a connected \((2r + 1)\)-regular graph with \(n\) vertices?
3) Can we **characterize when equality holds**? (i.e. when is the matching number minimized?)
In 1891, Petersen proved that every cubic graph without cut-edges has a perfect matching.
If there are cut-edges in a cubic graph, then what happens?
More generally, we consider connected \((2r + 1)\)-regular graphs.

1) How many cut-edges can a connected \((2r + 1)\)-regular graph with \(n\) vertices have?
2) How small can the matching number \(\alpha'(G)\) be in a connected \((2r + 1)\)-regular graph with \(n\) vertices?
3) Can we characterize when equality holds? (i.e. when is the matching number minimized?)
4) Are there other applications of balloons?
Definitions

- Graphs in which every vertex has degree 3 are cubic graphs.
Definitions

- Graphs in which every vertex has degree 3 are **cubic graphs**.
- The **matching number** $\alpha'(G)$ of a graph is the maximum size of a matching in it.
Definitions

- Graphs in which every vertex has degree 3 are **cubic graphs**.
- The **matching number** $\alpha'(G)$ of a graph is the maximum size of a matching in it.
- Let $c(G)$ denote the number of cut-edges in a graph G.

Definitions

- Graphs in which every vertex has degree 3 are **cubic graphs**.
- The **matching number** $\alpha'(G)$ of a graph is the maximum size of a matching in it.
- Let $c(G)$ denote the number of cut-edges in a graph G.
- Let $b(G)$ denote the number of balloons in a graph G.

Tools - Balloons and B_r

- A balloon in a graph G is a maximal 2-edge-connected subgraph of G that is incident to exactly one cut-edge of G.

B_1 and a cubic graph with two balloons
Motivation and Questions

Previous Results using Balloons

Smallest Matching Number and Edge-Connectivity

Chinese Postman Problem

Tools - Balloons and B_r

- A balloon in a graph G is a maximal 2-edge-connected subgraph of G that is incident to exactly one cut-edge of G.

- B_r: the unique graph with $2r + 3$ vertices having $2r + 2$ vertices of degree $2r + 1$ and one vertex of degree $2r$. (B_r is the complement of $P_3 + rK_2$)
Motivation and Questions

Previous Results using Balloons
Smallest Matching Number and Edge-Connectivity
Chinese Postman Problem

Tools - Balloons and B_r

A **balloon** in a graph G is a maximal 2-edge-connected subgraph of G that is incident to exactly one cut-edge of G.

B_r: the unique graph with $2r + 3$ vertices having $2r + 2$ vertices of degree $2r + 1$ and one vertex of degree $2r$. (B_r is the complement of $P_3 + rK_2$)

B_r is the smallest possible balloon in a $(2r + 1)$-regular graph.
\mathcal{F}_n: the family of connected $(2r + 1)$-regular graphs with n vertices.
\mathcal{F}_n: the family of connected $(2r + 1)$-regular graphs with n vertices.

Theorem (O and West 2009+)

If $G \in \mathcal{F}_n$, then $c(G) \leq \frac{r(n-2)-2}{2r^2+2r-1} - 1$ cut-edges, which reduces to $\frac{n-7}{3}$ for cubic graphs. Equality holds infinitely often.
Previous Results

\(\mathcal{F}_n \) : the family of connected \((2r + 1)\)-regular graphs with \(n \) vertices.

Theorem (O and West 2009+)

If \(G \in \mathcal{F}_n \), then \(c(G) \leq \frac{r(n-2)-2}{2r^2+2r-1} - 1 \) cut-edges, which reduces to \(\frac{n-7}{3} \) for cubic graphs. Equality holds infinitely often.

Theorem (Henning and Yeo 2007)

If \(G \in \mathcal{F}_n \), then \(\alpha'(G) \geq \frac{n}{2} - \frac{r(2r-1)n+2}{2(2r+1)(2r^2+2r-1)} \).
Construction - \mathcal{T}_r and \mathcal{H}_r

\mathcal{T}_r : the family of trees such that every non-leaf vertex has degree $2r + 1$ and all the leaves have the same color in a proper 2-coloring.
Construction - \mathcal{T}_r and \mathcal{H}_r

- \mathcal{T}_r: the family of trees such that every non-leaf vertex has degree $2r + 1$ and all the leaves have the same color in a proper 2-coloring.

- \mathcal{H}_r: the family of $(2r + 1)$-regular graphs obtained from trees in \mathcal{T}_r by identifying each leaf of such a tree with the vertex of degree $2r$ in a copy of B_r.

\[\text{a graph in } \mathcal{T}_1 \]

\[\text{a graph in } \mathcal{H}_1 \]
Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
- $b(G) = \frac{(2r-1)n+2}{4r^2+4r-2}$
Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
- $b(G) = \frac{(2r-1)n+2}{4r^2+4r-2}$
- $\alpha'(G) = \frac{1}{2}n - r \frac{(2r-1)n+2r}{2(4r^3+6r^2-1)}$
Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
- $b(G) = \frac{(2r-1)n+2}{4r^2+4r-2}$
- $\alpha'(G) = \frac{1}{2}n - \frac{r}{2} \frac{(2r-1)n+2r}{(4r^3+6r^2-1)}$
- $c(G) = \frac{r(n-2)-2}{2r^2+2r-1} - 1$
Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
- $b(G) = \frac{(2r-1)n+2}{4r^2+4r-2}$
- $\alpha'(G) = \frac{1}{2}n - r \frac{(2r-1)n+2r}{2(4r^3+6r^2-1)}$
- $c(G) = \frac{r(n-2)-2}{2r^2+2r-1} - 1$
Motivation and Questions

Previous Results using Balloons

Smallest Matching Number and Edge-Connectivity

Chinese Postman Problem

Properties of graphs in \mathcal{H}_r

Proposition (O and West 2009+)

Let G be an n-vertex graph in \mathcal{H}_r.

- $n \equiv 4(r + 1)^2 \mod (8r^3 + 12r^2 - 2)$
- $b(G) = \frac{(2r-1)n+2}{4r^2+4r-2}$
- $\alpha'(G) = \frac{1}{2}n - \frac{r}{2} \frac{(2r-1)n+2r}{4r^3+6r^2-1}$
- $c(G) = \frac{r(n-2)-2}{2r^2+2r-1} - 1$

Theorem (O and West 2009+)

When n is as above, G has the smallest matching number over all connected $(2r + 1)$-regular graphs if and only if G is in \mathcal{H}_r.

O and West

Generalized Balloons and Chinese Postman Problems
Balloons and Total Domination

- A subset S is a **dominating set** in a graph G if every vertex outside S has a neighbor in S.
Balloons and Total Domination

- A subset S is a **dominating set** in a graph G if every vertex outside S has a neighbor in S.
- A subset S is a **total dominating set** in a graph G if every vertex in $V(G)$ has a neighbor in S. The **total domination number** of G, denoted $\gamma_t(G)$, is the least size of such a set.
Balloons and Total Domination

- A subset S is a **dominating set** in a graph G if every vertex outside S has a neighbor in S.
- A subset S is a **total dominating set** in a graph G if every vertex in $V(G)$ has a neighbor in S. The **total domination number** of G, denoted $\gamma_t(G)$, is the least size of such a set.

Theorem (Henning, Kang, Shan, and Yeo 2008)

When G is regular with degree at least 3, $\gamma_t(G) \leq \alpha'(G)$.
Balloons and Total Domination

- A subset S is a **dominating set** in a graph G if every vertex outside S has a neighbor in S.
- A subset S is a **total dominating set** in a graph G if every vertex in $V(G)$ has a neighbor in S. The **total domination number** of G, denoted $\gamma_t(G)$, is the least size of such a set.

Theorem (Henning, Kang, Shan, and Yeo 2008)

When G is regular with degree at least 3, $\gamma_t(G) \leq \alpha'(G)$.

Theorem (O and West 2009+)

If G is a connected cubic graph, then $\gamma_t(G) \leq \alpha'(G) - b(G)/6$, unless $b(G) = 3$ and there is only one vertex outside the balloons.
What is the smallest matching number for the family of t-edge-connected $(2r + 1)$-regular graphs with n vertices? (Also for $2r$-regular graphs.)
New Questions

- What is the smallest matching number for the family of t-edge-connected $(2r + 1)$-regular graphs with n vertices? (Also for $2r$-regular graphs.)

- What is the best upper bound for the length of Chinese postman tours in t-edge-connected $(2r + 1)$-regular graphs with n vertices?
Smallest Matching Number and Edge-Connectivity

Theorem (O and West 2009+)

If G is a $(2t + 1)$-edge-connected $(2r + 1)$-regular graph with n vertices, then $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$, and this is sharp for $t \geq 1$.
Smallest Matching Number and Edge-Connectivity

Theorem (O and West 2009+)

If G is a $(2t + 1)$-edge-connected $(2r + 1)$-regular graph with n vertices, then $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$, and this is sharp for $t \geq 1$.

Proof. Let S be a set with maximum deficiency. Thus, $\alpha'(G) = \frac{1}{2}(n - \text{def}(S))$, where $\text{def}(S) = o(G - S) - |S|$.
Smallest Matching Number and Edge-Connectivity

Theorem (O and West 2009+)

If G is a $(2t + 1)$-edge-connected $(2r + 1)$-regular graph with n vertices, then $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n^2}{2}$, and this is sharp for $t \geq 1$.

Proof. Let S be a set with maximum deficiency. Thus, $\alpha'(G) = \frac{1}{2}(n - \text{def}(S))$, where $\text{def}(S) = o(G - S) - |S|$.

Let c_i count the odd components of $G - S$ having i edges to S. Let $c = c_{(2t+1)} + \ldots + c_{(2r-1)}$, and let $c' = o(G - S) - c$.
Smallest Matching Number and Edge-Connectivity

Theorem (O and West 2009+)

If \(G \) is a \((2t + 1)\)-edge-connected \((2r + 1)\)-regular graph with \(n \) vertices, then \(\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2 + t}\right)\frac{n}{2} \), and this is sharp for \(t \geq 1 \).

Proof. Let \(S \) be a set with maximum deficiency. Thus, \(\alpha'(G) = \frac{1}{2}(n - \text{def}(S)) \), where \(\text{def}(S) = o(G - S) - |S| \).

Let \(c_i \) count the odd components of \(G - S \) having \(i \) edges to \(S \). Let \(c = c_{(2t+1)} + \ldots + c_{(2r-1)} \), and let \(c' = o(G - S) - c \).

Note that for \((2t + 1) \leq i \leq 2r - 1\), each odd component of \(G - S \) having \(i \) edges to \(S \) has at least \((2r + 3)\) vertices. (Otherwise, each vertex of \(G \) has a neighbor outside.)
Completion of Proof

Counting the edges joining S to odd components of $G - S$ yields

$$(2r + 1)|S| \geq (2r + 1)c' + (2t + 1)c.$$
Completion of Proof

Counting the edges joining S to odd components of $G - S$ yields

$$(2r + 1)|S| \geq (2r + 1)c' + (2t + 1)c.$$

Hence $|S| \geq c' + \left(\frac{2t+1}{2r+1}\right)c \geq \left(\frac{2t+1}{2r+1}\right)c.$
Completion of Proof

Counting the edges joining S to odd components of $G - S$ yields
$$(2r + 1)|S| \geq (2r + 1)c' + (2t + 1)c.$$
Hence
$$|S| \geq c' + \left(\frac{2t+1}{2r+1}\right)c \geq \left(\frac{2t+1}{2r+1}\right)c.$$
Therefore,
$$n \geq |S| + c(2r + 3) \geq \left(\frac{2t+1}{2r+1}\right)c + c(2r + 3),$$
which implies that
$$c \leq \left(\frac{2r+1}{4r^2+4r+4+2t}\right)n.$$
Now, we compute...
Completion of Proof

Counting the edges joining S to odd components of $G - S$ yields

$$(2r + 1)|S| \geq (2r + 1)c' + (2t + 1)c.$$

Hence

$$|S| \geq c' + \left(\frac{2t+1}{2r+1}\right)c \geq \left(\frac{2t+1}{2r+1}\right)c.$$

Therefore,

$$n \geq |S| + c(2r + 3) \geq \left(\frac{2t+1}{2r+1}\right)c + c(2r + 3),$$

which implies that

$$c \leq \left(\frac{2r+1}{4r^2+4r+4+2t}\right)n.$$

Now, we compute

$$\text{def}(S) = (c + c') - |S| \leq c - \frac{2t + 1}{2r + 1}c = \frac{2(r - t)}{2r + 1}c,$$

$$\leq \frac{2(r - t)}{2r + 1} \left(\frac{2r + 1}{4r^2 + 4r + 4 + 2t}\right)n = \frac{(r - t)n}{2(r + 1)^2 + t}.$$
Theorem (O and West 2009+)

If G is a $2t$-edge-connected $(2r + 1)$-regular graph with n vertices, then again $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right) \frac{n}{2}$, and this is sharp.

(same bound as when $\kappa'(G) \geq 2t + 1$)
Bounds for Other Cases

Theorem (O and West 2009+)

If G is a $2t$-edge-connected $(2r + 1)$-regular graph with n vertices, then again $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$, and this is sharp.

(same bound as when $\kappa'(G) \geq 2t + 1$)

Theorem (O and West 2009+)

If G is a $(2t-1)$-edge-connected $2r$-regular graph with n vertices, then $\alpha'(G) \geq \frac{n}{2} - \left(\frac{r-t}{2r^2+r+t}\right)\frac{n}{2}$, and this inequality is sharp even when G is $2t$-edge-connected.
Sharpness for Odd Regular Graphs - $B_{r,t}$ and $G_{r,t}$

- Let $B_{r,t}$ be a graph obtained from the graph B_r by deleting a matching with t edges in B_r.

$B_{2,1}$ a (5, 3)-biregular bigraph H

$G_{2,1}$
Let $B_{r,t}$ be a graph obtained from the graph B_r by deleting a matching with t edges in B_r.

To make a $(2t + 1)$-edge-connected $(2r + 1)$-regular $G_{r,t}$, replace each vertex of T in a $(2t + 1)$-edge-connected $(2r + 1, 2t + 1)$-biregular (S, T)-bigraph H with a copy of $B_{r,t}$.
Let $B_{r,t}$ be a graph obtained from the graph B_r by deleting a matching with t edges in B_r.

To make a $(2t + 1)$-edge-connected $(2r + 1)$-regular $G_{r,t}$, replace each vertex of T in a $(2t + 1)$-edge-connected $(2r + 1, 2t + 1)$-biregular (S, T)-bigraph H with a copy of $B_{r,t}$.

Note: $|S| = q(2t + 1)$ and $|T| = q(2r + 1)$ for some $q \in \mathbb{Q}$.
Motivation and Questions
Previous Results using Balloons
Smallest Matching Number and Edge-Connectivity
Chinese Postman Problem

Matching Number of $G_{r,t}$

Proposition (O and West 2009+)

For $0 \leq t \leq r$, $\alpha'(G_{r,t}) = \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$,

where $n = q(2t + 1) + q(2r + 1)(2r + 3) = q \left((2r + 2)^2 + 2t \right)$.
Motivation and Questions
Previous Results using Balloons
Smallest Matching Number and Edge-Connectivity
Chinese Postman Problem

Matching Number of $G_{r,t}$

Proposition (O and West 2009+)

For $0 \leq t \leq r$, $\alpha'(G_{r,t}) = \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$,
where $n = q(2t + 1) + q(2r + 1)(2r + 3) = q \left((2r + 2)^2 + 2t\right)$.

Proof. By the previous theorem, $\alpha'(G_{r,t}) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$.
For $0 \leq t \leq r$, $\alpha'(G_{r,t}) = \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$, where $n = q(2t+1) + q(2r+1)(2r+3) = q((2r+2)^2 + 2t))$.

Proof. By the previous theorem, $\alpha'(G_{r,t}) \geq \frac{n}{2} - \left(\frac{r-t}{2(r+1)^2+t}\right)\frac{n}{2}$.

Recall that $|S| = (2t+1)q$. Thus,

$$\text{def}(S) = o(G - S) - |S| = q(2r + 1) - q(2t + 1)$$

$$= 2q(r - t) = 2\frac{n}{(2r + 2)^2 + 2t}(r - t) = \frac{(r - t)n}{2(r + 1)^2 + t}.$$
Motivation and Questions
Previous Results using Balloons
Smallest Matching Number and Edge-Connectivity
Chinese Postman Problem

Edge-Connectivity of \(B_{r,t} \)

Lemma

For \(0 \leq t \leq r \), the edge-connectivity of the graph \(B_{r,t} \) is \(2r \).
Edge-Connectivity of $B_{r,t}$

Lemma
For $0 \leq t \leq r$, the edge-connectivity of the graph $B_{r,t}$ is $2r$.

Proof. (Elementary exercise) If a graph G is connected, and $\frac{n}{2} \leq \delta(G) \leq n$, then $\kappa'(G) = \delta(G)$, and the above is a special case.
Edge-Connectivity of $B_{r,t}$

Lemma

For $0 \leq t \leq r$, the edge-connectivity of the graph $B_{r,t}$ is $2r$.

Proof. (Elementary exercise) If a graph G is connected, and

$$\frac{n}{2} \leq \delta(G) \leq n,$

then $\kappa'(G) = \delta(G)$, and the above is a special case.

Lemma

Iteratively replacing a vertex of T with $B_{r,t}$ in H preserves $(2t + 1)$-edge-connectedness.
To show that equality holds infinitely often, we need to build an infinite family of such H.

Cyclic construction using two copies of $K_{3,5}$, and $B_{2,1,2}$

We are gonna put a bunch of copies of $K_{2t+1,2r+1}$ around a circle and modify them to construct H.
Edge Connectivity of $B_{r,t,k}$

Lemma

For $a \geq b$, if a graph H is the graph obtained from $K_{a,b}$ by deleting a matching of size b, then $\kappa'(H) = b - 1$.
Lemma

For $a \geq b$, if a graph H is the graph obtained from $K_{a,b}$ by deleting a matching of size b, then $\kappa'(H) = b - 1$.

Proof. (Elementary exercise) If a graph G is a bipartite graph with diameter at most 3, then $\kappa'(G) = \delta(G)$, and the above is a special case.
Edge Connectivity of $B_{r,t,k}$

Lemma

For $a \geq b$, if a graph H is the graph obtained from $K_{a,b}$ by deleting a matching of size b, then $\kappa'(H) = b - 1$.

Proof. (Elementary exercise) If a graph G is a bipartite graph with diameter at most 3, then $\kappa'(G) = \delta(G)$, and the above is a special case.

Theorem (O and West 2009+)

For $0 \leq t \leq r$, $\kappa'(B_{r,t,k}) = 2t + 1$
Sharpness for Even Regular Graphs: $B'_{r,t}$ and $G'_{r,t}$

Let $B'_{r,t}$ be the graph obtained from K_{2r+1} by deleting a matching of with t edges.

To make a $2t$-edge-connected $2r$-regular graph $G'_{r,t}$, replace each vertex of T in $2t$-edge-connected $(2r,2t)$-biregular (S,T)-bipartite H' with a copy of $B'_{r,t}$.

Similarly, we can have an infinite family of $2t$-edge-connected $2r$-regular graphs like in previous steps.
A **Chinese Postman tour** in a connected graph G is a shortest closed walk traversing all edges in G.
Chinese Postman Problem

A **Chinese Postman tour** in a connected graph G is a shortest closed walk traversing all edges in G. Let $e_P(G)$ be the number of edges in it.
A **Chinese Postman tour** in a connected graph G is a shortest closed walk traversing all edges in G. Let $e_P(G)$ be the number of edges in it.

A **parity subgraph** in a graph G is a spanning subgraph H of G such that $d_G(v) \equiv d_H(v) \pmod{2}$ for every vertex v in G.
A **Chinese Postman tour** in a connected graph G is a shortest closed walk traversing all edges in G.

Let $e_P(G)$ be the number of edges in it.

A **parity subgraph** in a graph G is a spanning subgraph H of G such that $d_G(v) \equiv d_H(v) \pmod{2}$ for every vertex v in G.

Let $p(G)$, the **parity number** of G, be the minimum number of edges in a parity subgraph of G.
A **Chinese Postman tour** in a connected graph G is a shortest closed walk traversing all edges in G.

Let $e_P(G)$ be the number of edges in it.

A **parity subgraph** in a graph G is a spanning subgraph H of G such that $d_G(v) \equiv d_H(v) \pmod{2}$ for every vertex v in G.

Let $p(G)$, the **parity number** of G, be the minimum number of edges in a parity subgraph of G.

Note that $e_P(G) = |E(G)| + p(G)$. In view of many applications of the Chinese Postman problem, it is natural to ask for the value of $e_P(G)$, or equivalently, the value of $p(G)$.
Construction of \mathcal{H}_r

Let T'_r be the family of trees such that every non-leaf vertex has degree $2r + 1$.

- a graph in T'_1

- a graph in \mathcal{H}_1'
Construction of \mathcal{H}_r'

- Let \mathcal{T}_r' be the family of trees such that every non-leaf vertex has degree $2r + 1$.
- Let \mathcal{H}_r' be the family of $(2r + 1)$-regular graphs obtained from trees in \mathcal{T}_r' by identifying each leaf of such a tree with the neck in a copy of B_r.
Construction of \mathcal{H}_r'

Let \mathcal{T}_r' be the family of trees such that every non-leaf vertex has degree $2r + 1$.

Let \mathcal{H}_r' be the family of $(2r + 1)$-regular graphs obtained from trees in \mathcal{T}_r' by identifying each leaf of such a tree with the neck in a copy of B_r.

For $r = 1$, we will show the graph in \mathcal{H}_r' have the largest value of $p(G)$ among n-vertex cubic graphs.
Parity Number of \mathcal{H}'_r

Proposition

Let $p_r = 2r^2 + 2r - 1$. For any n-vertex graph G in \mathcal{H}'_r,

\[
b(G) = \frac{(2r-1)n+2}{2p_r}, \quad c(G) = \frac{r(n-2)+2}{p_r} - 1.
\]
Parity Number of \mathcal{H}'_r

Proposition

Let $p_r = 2r^2 + 2r - 1$. For any n-vertex graph G in \mathcal{H}'_r,

\[b(G) = \frac{(2r-1)n+2}{2pr}, \quad c(G) = \frac{r(n-2)-2}{pr} - 1. \]

Lemma

If G is regular of odd degree, then every cut-edge is in every parity subgraph.
Parity Number of \mathcal{H}_r'

Proposition

Let $p_r = 2r^2 + 2r - 1$. For any n-vertex graph G in \mathcal{H}_r',

$$b(G) = \frac{(2r-1)n+2}{2p_r}, \quad c(G) = \frac{r(n-2)-2}{p_r} - 1.$$

Lemma

If G is regular of odd degree, then every cut-edge is in every parity subgraph.

Corollary

If G is a graph in \mathcal{H}_r', and T is the tree obtained by shrinking each B_r in G to one vertex, then every parity subgraph of G contains T.
Parity Number of \mathcal{H}_r

Theorem (O and West 2009+)

If G is in \mathcal{H}_r, then $p(G) = \frac{(2r^2 + 3r - 1)n - 2(r+1)}{4r^2 + 4r - 2} - 1$, which reduces to $\frac{2n - 5}{3}$ for cubic graphs.
Parity Number of \mathcal{H}_r'

Theorem (O and West 2009+)

If G is in \mathcal{H}_r', then $p(G) = \frac{(2r^2+3r-1)n-2(r+1)}{4r^2+4r-2} - 1$, which reduces to $\frac{2n-5}{3}$ for cubic graphs.

Proof. Let T be the tree obtained by shrinking all the balloons in G. By the previous lemma, a parity subgraph must use all the edges in T.

O and West
Generalized Balloons and Chinese Postman Problems
Parity Number of \mathcal{H}_r

Theorem (O and West 2009+)

If G is in \mathcal{H}_r, then $p(G) = \frac{(2r^2+3r-1)n-2(r+1)}{4r^2+4r-2} - 1$, which reduces to $\frac{2n-5}{3}$ for cubic graphs.

Proof. Let T be the tree obtained by shrinking all the balloons in G. By the previous lemma, a parity subgraph must use all the edges in T. A parity subgraph of G must add $r+1$ more edges in each balloon (since B_r has $2r+3$ vertices).
Parity Number of \mathcal{H}'_r

Theorem (O and West 2009+)

If G is in \mathcal{H}'_r, then $p(G) = \frac{(2r^2 + 3r - 1)n - 2(r + 1)}{4r^2 + 4r - 2} - 1$, which reduces to $\frac{2n - 5}{3}$ for cubic graphs.

Proof. Let T be the tree obtained by shrinking all the balloons in G. By the previous lemma, a parity subgraph must use all the edges in T. A parity subgraph of G must add $r + 1$ more edges in each balloon (since B_r has $2r + 3$ vertices). Hence,

$$p(G) = c(G) + (r + 1)b(G) = \frac{r(n - 2) - 2}{p_r} - 1 + (r + 1)\frac{(2r - 1)n + 2}{2p_r}$$

$$= \frac{2r(n - 2) - 4 + (r + 1)(2r - 1)n + 2}{2p_r} - 1 = \frac{(2r^2 + 3r - 1)n - 2(r + 1)}{4r^2 + 4r - 2} - 1.$$
Definitions and Remarks for the upper bound

- An r-graph is an r-regular multigraph G on an even number of vertices with the property that every edge-cut which separates $V(G)$ into two sets of odd cardinality has size at least r.

Definitions and Remarks for the upper bound

- An r-graph is an r-regular multigraph G on an even number of vertices with the property that every edge-cut which separates $V(G)$ into two sets of odd cardinality has size at least r.
- Note that if G is a 2-edge-connected cubic multigraph, then G is 3-graph.
Definitions and Remarks for the upper bound

- An \textit{r-graph} is an \(r\)-regular multigraph \(G\) on an even number of vertices with the property that every edge-cut which separates \(V(G)\) into two sets of odd cardinality has size at least \(r\).
- Note that if \(G\) is a 2-edge-connected cubic multigraph, then \(G\) is 3-graph.
- More generally, if \(G\) is an \((r-1)\)-edge-connected \(r\)-regular multigraph with even order, then \(G\) is \(r\)-graph.
Definitions and Remarks for the upper bound

- An r-graph is an r-regular multigraph G on an even number of vertices with the property that every edge-cut which separates $V(G)$ into two sets of odd cardinality has size at least r.
- Note that if G is a 2-edge-connected cubic multigraph, then G is 3-graph.
- More generally, if G is an $(r - 1)$-edge-connected r-regular multigraph with even order, then G is r-graph.
- Every r-edge-colorable r-regular graph is an r-graph.
Application of Edmonds’ Theorem

Lemma (Edmonds 1965)

If G is an r-graph, then there is an integer p and a family \mathcal{M} of perfect matchings such that each edge of G is contained in precisely p members of \mathcal{M}. (The members of \mathcal{M} need not be distinct.)
Application of Edmonds’ Theorem

Lemma (Edmonds 1965)
If G is an r-graph, then there is an integer p and a family \mathcal{M} of perfect matchings such that each edge of G is contained in precisely p members of \mathcal{M}. (The members of \mathcal{M} need not be distinct.)

Lemma (O and West 2009+)
Let G be a $2r$-edge-connected $(2r + 1)$-regular multigraph. If G is edge-weighted, then there exists a perfect matching with weight at most $\frac{1}{2r+1} W$, where $W = \sum_{e \in E(G)} w_e$ and w_e is the weight on an edge e. For cubic graphs, the bound reduces to $\frac{1}{3} W$.
Proof. By Edmonds’ Lemma, $|\mathcal{M}| \frac{n}{2} = \frac{(2r+1)n}{2} p$, which implies that $|\mathcal{M}| = p(2r + 1)$.
Proof of the theorem

Proof. By Edmonds’ Lemma, $|\mathcal{M}| \frac{n}{2} = \frac{(2r+1)n}{2} p$, which implies that $|\mathcal{M}| = p(2r + 1)$.

Let $\mathcal{M} = \{M_1, ..., M_{p(2r+1)}\}$.
Proof of the theorem

Proof. By Edmonds’ Lemma, $|M| \frac{n}{2} = \frac{(2r+1)n}{2} p$, which implies that $|M| = p(2r + 1)$.

Let $M = \{M_1, \ldots, M_{p(2r+1)}\}$.

Since $\sum w_{M_i} = p \sum_{e \in E(G)} w_e = pW$ where w_{M_i} is the total weight of all edges in M_i, the pigeonhole principle implies that a matching M_j with the smallest weight in the family has weight at most $\frac{1}{2r+1} W$.
Chinese Postman Problem in Cubic graphs

\mathcal{F}_n: the family of connected cubic graphs with n vertices.
Chinese Postman Problem in Cubic graphs

\(\mathcal{F}_n \): the family of connected cubic graphs with \(n \) vertices.

Theorem (O and West 2009+)

If \(G \) is in \(\mathcal{F}_n \) and \(n \geq 10 \), then \(p(G) \leq \frac{2n-5}{3} \),

with equality if \(G \in \mathcal{H}_1' \).

Proof. If \(G \) is in \(\mathcal{F}_n \) and has no balloons or \(n = 10 \), then \(G \) has a perfect matching and \(p(G) = n/2 \leq \frac{2n-5}{3} \).
Chinese Postman Problem in Cubic graphs

F_n: the family of connected cubic graphs with n vertices.

Theorem (O and West 2009+)

If G is in F_n and $n \geq 10$, then $p(G) \leq \frac{2n-5}{3}$, with equality if $G \in \mathcal{H}_1$.

Proof. If G is in F_n and has no balloons or $n = 10$, then G has a perfect matching and $p(G) = n/2 \leq \frac{2n-5}{3}$.

Therefore, we may assume that G has a balloon and $n > 10$.

Chinese Postman Problem in Cubic graphs

\(\mathcal{F}_n \): the family of connected cubic graphs with \(n \) vertices.

Theorem (O and West 2009+)

If \(G \) is in \(\mathcal{F}_n \) and \(n \geq 10 \), then \(p(G) \leq \frac{2n-5}{3} \),
with equality if \(G \in \mathcal{H}_1' \).

Proof. If \(G \) is in \(\mathcal{F}_n \) and has no balloons or \(n = 10 \), then \(G \) has a perfect matching and \(p(G) = n/2 \leq \frac{2n-5}{3} \).

Therefore, we may assume that \(G \) has a balloon and \(n > 10 \).

Proceed by induction on \(n \). Let \(e \) be a cut-edge.
Let \(G_1 \) and \(G_2 \) be the components of \(G - e \).
Chinese Postman Problem in Cubic graphs

\(\mathcal{F}_n \): the family of connected cubic graphs with \(n \) vertices.

Theorem (O and West 2009+)

If \(G \) is in \(\mathcal{F}_n \) and \(n \geq 10 \), then \(p(G) \leq \frac{2n-5}{3} \), with equality if \(G \in \mathcal{H}_1' \).

Proof. If \(G \) is in \(\mathcal{F}_n \) and has no balloons or \(n = 10 \), then \(G \) has a perfect matching and \(p(G) = n/2 \leq \frac{2n-5}{3} \).

Therefore, we may assume that \(G \) has a balloon and \(n > 10 \).

Proceed by induction on \(n \). Let \(e \) be a cut-edge.
Let \(G_1 \) and \(G_2 \) be the components of \(G - e \).

Let \(G_1' \) and \(G_2' \) be the graphs obtained from \(G \) by replacing \(G_2 \) and \(G_1 \), respectively, with \(B_1 \).
Chinese Postman Problem in Cubic Graphs

Every parity subgraph of G'_i contains e and uses at least two edges in B_1. Hence, $p(G'_i) = p(G_i) + 3$ and $p(G) = p(G'_1) + p(G'_2) - 5$.
Every parity subgraph of G'_i contains e and uses at least two edges in B_1. Hence, $p(G'_i) = p(G_i) + 3$ and $p(G) = p(G'_1) + p(G'_2) - 5$.

If neither G_1 nor G_2 is B_1, then G'_1 and G'_2 are smaller than G.
Chinese Postman Problem in Cubic Graphs

Every parity subgraph of G'_i contains e and uses at least two edges in B_1. Hence, $p(G'_i) = p(G_i) + 3$ and $p(G) = p(G'_1) + p(G'_2) - 5$.

If neither G_1 nor G_2 is B_1, then G'_1 and G'_2 are smaller than G.

Letting $n_i = |V(G'_i)|$, we have $n = n_1 + n_2 - 10$.

By applying the induction hypothesis to both G'_1 and G'_2,

Motivation and Questions

Previous Results using Balloons

Smallest Matching Number and Edge-Connectivity

Chinese Postman Problem
Chinese Postman Problem in Cubic Graphs

Every parity subgraph of G'_i contains e and uses at least two edges in B_1. Hence, $p(G'_i) = p(G_i) + 3$ and $p(G) = p(G'_1) + p(G'_2) - 5$.

If neither G_1 nor G_2 is B_1, then G'_1 and G'_2 are smaller than G.

Letting $n_i = |V(G'_i)|$, we have $n = n_1 + n_2 - 10$.

By applying the induction hypothesis to both G'_1 and G'_2,

$$p(G) = p(G'_1) + p(G'_2) - 5 \leq \frac{2n_1 - 5}{3} + \frac{2n_2 - 5}{3} - 5 = \frac{2n - 5}{3}$$
Chinese Postman Problem in Cubic Graphs

Last case: every cut-edge is incident to a copy of B_1.
Chinese Postman Problem in Cubic Graphs

Last case: every cut-edge is incident to a copy of B_1. Let each edge have weight 1. Form G' by deleting all the balloons.
Last case: every cut-edge is incident to a copy of B_1. Let each edge have weight 1. Form G' by deleting all the balloons. In G', replace each "thread" through vertices of degree 2 with a single edge whose weight is the length of the thread.
Last case: every cut-edge is incident to a copy of B_1.
Let each edge have weight 1. Form G' by deleting all the balloons. In G', replace each "thread" through vertices of degree 2 with a single edge whose weight is the length of the thread.
The resulting weighted graph G'' has a perfect matching with at most $1/3$ of its total weight ($= \frac{m-8b}{3}$).
(Special case: when G' is a cycle, G has a perfect matching.)
Last case: every cut-edge is incident to a copy of B_1.
Let each edge have weight 1. Form G' by deleting all the balloons.
In G', replace each "thread" through vertices of degree 2 with a single edge whose weight is the length of the thread.
The resulting weighted graph G'' has a perfect matching with at most $1/3$ of its total weight ($= \frac{m-8b}{3}$).
(Special case: when G' is a cycle, G has a perfect matching.)
Now, $p(G) \leq p(G') + 3b \leq \frac{m-8b}{3} + 3b = \frac{3n-16b}{6} + 3b \leq \frac{2n-5}{3}$.