Homework #4 Solutions

(1) **Theorem.** On \mathbb{E}^2, \mathbb{H}^2, or \mathbb{S}^2, $\angle BAC \simeq \angle B'A'C'$ if and only if $m \angle BAC = m \angle B'A'C'$.

Proof. Assume first that $\angle BAC \simeq \angle B'A'C'$. Then by definition there exists an isometry f so that $f(\angle BAC) = \angle B'A'C'$. Since isometries preserve angle measure, this implies that $m \angle BAC = m \angle B'A'C'$.

So assume instead that $m \angle BAC = m \angle B'A'C'$. By the Ray Congruence Theorem, there exists an isometry f which takes $\overrightarrow{A'B'}$ to \overrightarrow{AB}. If $f(\overrightarrow{A'C'})$ and \overrightarrow{AC} lie on opposite sides of $\overrightarrow{A'B'}$, let $g = R \circ f$, where R is the reflection over \overrightarrow{AB}. Otherwise, let $g = f$. Then g takes \overrightarrow{AB} to $\overrightarrow{A'B'}$; moreover $g(\overrightarrow{A'C'})$ and \overrightarrow{AC} lie on the same side of \overrightarrow{AB}. Finally, since $m \angle BAC = m \angle B'A'C'$ and isometries preserve measure, $m \angle B'A'C' = m \angle BAC$.

Hence, by the protractor axiom, $g(\overrightarrow{A'C'}) = \overrightarrow{AC}$. \square

(2) (1) The fewest restriction is a) and b).

(2) **Theorem.** Let $\triangle ABC$ and $\triangle A'B'C'$ be triangles on the sphere such that each edge has length less than half the circumference. If $m \overrightarrow{AB} = m \overrightarrow{A'B'}$, $m \angle BAC = m \angle B'A'C'$, and $m \overrightarrow{AC} = m \overrightarrow{A'C'}$, then $\triangle ABC \simeq \triangle A'B'C'$.

Proof. Since $m \angle BAC = m \angle B'A'C'$, ACT implies that there exists an an isometry f taking $\angle B'A'C'$ to $\angle BAC$. More precisely, $f(\overrightarrow{A'B'}) = \overrightarrow{AB}$, and $f(\overrightarrow{A'C'}) = \overrightarrow{AC}$. Because there is a unique segment along a ray with a given length and isometries preserves length, and since $m \overrightarrow{AB} = m \overrightarrow{A'B'}$ and $m \overrightarrow{AC} = m \overrightarrow{A'C'}$, this implies that we must have $f(\overrightarrow{A'B'}) = \overrightarrow{AB}$ and $f(\overrightarrow{A'C'}) = \overrightarrow{AC}$. Finally, $f(\overrightarrow{BC'})$ and \overrightarrow{BC} are both segments connecting B and C. Moreover, given any two points B and C on the sphere, there is at most one segment joining them with length less than S. Therefore, since $m \overrightarrow{BC} < S$ and $m \overrightarrow{BC'} = m f(\overrightarrow{BC'}) < S$ by assumption, we conclude that $f(\overrightarrow{BC'}) = \overrightarrow{BC}$. \square

(a) Pick three points A, B, and C that are not collinear. Let \overrightarrow{AB} and \overrightarrow{AC} be the shortest segments joining their endpoints. Then by alternatively taking the short or long segment \overrightarrow{BC}, we can get two triangles that satisfy the assumptions of SAS but are not congruent. In this case, the problem is that, even though there is a unique line joining B and C, there are two segments joining them because the ruler axiom is false. Now let B and C be antipodal points, but again let \overrightarrow{AB} and \overrightarrow{AC} be the shortest segments joining their endpoints. Then, since the incidence axiom fails, there is more than one (in fact, infinitely many) joining B and C, and hence more than one segment joining them. By picking two different segments, we can get two triangles that satisfy the assumptions of SAS but are not congruent.
(3) Consider a X° cone.
(a) There is at least one straight line between two points exactly if $X \leq 360$.
(b) There is at most one straight line between two points exactly if $X \geq 350$.