Prepare tabs:
(1) Graph $e^{-t} \sin x$, $x = 0$ to 4π, $t = 0$ to 10; switch to contour plot & hide address.
(2) Announcements.
(3) Graph $\frac{xy}{x^2+y^2}$
(4) lecture notes.

Show tab 1 & write question on board.

PREVIOUSLY

Note: dark = negative & light = positive.

Question 1.

When $x = 2$ & $t = 4$...

(A) $f_t > 0$ & $f_{xx} > 0$.
(B) $f_t > 0$ & $f_{xx} < 0$.
(C) $f_t < 0$ & $f_{xx} > 0$.
(D) $f_t < 0$ & $f_{xx} = 0$.
(E) $f_t < 0$ & $f_{xx} < 0$.

Show tab 2 & read announcements.
PDE’s

ODE: Ordinary differential equation
One independent variable

Example.

\[p(t) = \text{population at time } t. \]

\[p'(t) = cp(t) \]

\[\Rightarrow p(t) = p_0e^{ct}. \]

PDE: Partial differential equation
More variables

Draw rod w/ snowflake at both end and fire in the middle.

What will happen?

\[u(x, t) = \text{temperature of rod at} \]

• position \(x \) &

• time \(t \).

Heat equation:

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \]
Say \(u(x, 0) = \sin x \).

What do we expect?

Graph \(\sin x \) between 0 and \(4\pi \).

Where \(\frac{\partial^2 u}{\partial x^2} > 0 \), temp increases. Draw arrows to these regions.

Where \(\frac{\partial^2 u}{\partial x^2} < 0 \), temp decreases. Draw arrows to these regions.

Example. Show \(u = e^{-t} \sin x \) satisfies the heat equation,

\[
\begin{align*}
 u_t &= -e^{-t} \sin x \\
 u_x &= e^{-t} \cos x \\
 u_{xx} &= -e^{-t} \sin x \\
 \Rightarrow u_t &= u_{xx}.
\end{align*}
\]

Show tab 1.

Note: You do not have to find solutions to PDE’s, just check if functions are solutions.
The linearization of $f : \mathbb{R}^2 \to \mathbb{R}$ at (x_0, y_0) is

$$L(x, y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Note:

- L is a linear function.
- $L(x_0, y_0) = f(x_0, y_0)$.
- $\frac{\partial L}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)$.
- $\frac{\partial L}{\partial y}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0)$.

$\Rightarrow L$ the linear function that’s most like f near (x_0, y_0).

For x and y near (x_0, y_0)

$$f(x, y) \simeq L(x, y).$$

This is the linear approximation.
Example.

Find the linearization of \(f(x, y) = \frac{x}{x+y} \) at \((1, 1)\).

\[
f(1, 1) = \frac{1}{2}
\]

\[
f_x = \frac{1}{x+y} - \frac{x}{(x+y)^2}
\]

\[
\Rightarrow f_x(1, 1) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.
\]

\[
f_y = -\frac{x}{(x+y)^2}
\]

\[
\Rightarrow f_y(1, 1) = -\frac{1}{4}
\]

\[
\Rightarrow L(x, y) = \frac{1}{2} + \frac{1}{4}(x-1) - \frac{1}{4}(y-1)
\]

Question 2.

Use \(L \) to estimate \(f(1.1, .8) \)

(A) .45
(B) .5
(C) .55
(D) .575
(E) .6
In fact, \(f(1.1, .8) = 5.79 = + \).

The error in the linear approx. at \((x_0 + \Delta x, y_0 + \Delta y)\) is
\[
E(\Delta x, \Delta y) := f(x_0 + \Delta x, y_0 + \Delta y) - L(x_0 + \Delta x, y_0 + \Delta y).
\]

We say \(f \) is **differentiable** at \((x_0, y_0)\) \(\iff\)
\[
\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{E(\Delta x, \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.
\]

\(\iff\) If we zoom in on the graph of \(f \), we get the graph of \(L \)
\(\iff\) \(L \) is a good approximation to \(f \).

Theorem. If \(f_x \) & \(f_y \) exist near \((a, b)\) & are continuous
at \((a, b)\), then \(f \) is differentiable at \((a, b)\).

Example.
Is \(f(x, y) = \frac{x}{x+y} \) differentiable at \((1, 1)\)?

Yes, because \(f_x \) and \(f_y \) are continuous near \((1, 1)\).

Warning: may fail if \(f_x \) & \(f_y \) exist but aren’t continuous.

If \(\sim \) 15 minutes remaining, skip example.

Example. Let
\[
f(x, y) := \begin{cases}
\frac{x^2y^2}{(x^2+y^2)^2} & (x, y) \neq (0, 0) \\
0 & (x, y) = (0, 0)
\end{cases}
\]
\[
f(x, 0) = f(0, y) = 0 \Rightarrow f_x(0, 0) = f_y(0, 0) = 0 \text{ exist.}
\]
However, \(\lim_{(x,y) \to (0,0)} f(x, y) \) doesn’t exist,
\(\Rightarrow f \) isn’t continuous or differentiable at \((0, 0)\). **Show tab 3.**
Tangent planes.

Let $z_0 = f(x_0, y_0)$. The **tangent plane** to f at (x_0, y_0, z_0) is the graph of the linear approx. to f at (x_0, y_0).

$$z = z_0 + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Example.

Find the tangent plane to $f(x, y) = \frac{x}{x+y}$ at $(1, 1, \frac{1}{2})$.

$$z = \frac{1}{2} + \frac{1}{4}(x - 1) - \frac{1}{4}(y - 1)$$

Note:

- The curve $x = x_0 \land z = f(x, y)$ lies in the graph of f.
- It's tangent line at (y_0, z_0);
 $$y \mapsto \left(x_0, y, z_0 + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) \right),$$
 lies in the tangent plane to f at (x_0, y_0, z_0).
- So does the tangent line to $y = y_0 \land z = f(x, y)$.

Later, we’ll see the tangent plane at (x_0, y_0, z_0) is the union of all tangent lines to curves in $z = f(x, y)$ containing (x_0, y_0, z_0).
Differentials.

The **differential** of $f : \mathbb{R}^2 \to \mathbb{R}$ at (x_0, y_0) is

$$df = \frac{\partial f}{\partial x}(x_0, y_0)dx + \frac{\partial f}{\partial y}(x_0, y_0)dy.$$

Here,

- dx and dy are independent variables;
- they represent the change in x and y, respectively.

Question 3.

Find the tangent plane to $f(x, y) = 1 + ye^x$ at $(0, 2, 3)$.

(A) $z = 3 + ye^x(x - 0) + e^y(y - 2)$

(B) $z = 2x + y$

(C) $z = 1 + 2x + y$

(D) $z = 2(x - 0) + 1(y - 2)$

(E) $z + 2(x - 0) + (y - 2) = 3$