Prepare tabs:
(1) Plot $\langle -y, x \rangle$.
(2) announcements.
(3) Plot $\frac{1}{x^2+y^2}(-y, x)$.

Previously

Question 1.
C_1 is $x^2 + y^2 = 1$ & $x \leq 0$ and C_2 is $x^2 + y^2 = 1$ & $x \geq 0$.
Orient both from $(-1, 0)$ to $(1, 0)$ & let $F = \langle -y, x \rangle$.
Use $\int_C F \cdot dr = \int_C F \cdot Tds$ to find $\int_{C_1} F \cdot dr - \int_{C_2} F \cdot dr$.

(A) -2π
(B) $-\pi$
(C) 0
(D) π
(E) 2π

Show tab 1.

If you are done: answer the same question for

$$F = \begin{pmatrix} -y \\ x^2 + y^2 \end{pmatrix}.$$
Conservative vector fields I [16.3]

Let \mathbf{F} be a vector field on $D \subset \mathbb{R}^n$.

We say $\int_C \mathbf{F} \cdot d\mathbf{r}$ is **path independant** if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

if C_1 & C_2 start at the same point & end at the same point.

Example. $\langle -y, x \rangle$ is not path independant.

Example.

On $x^2 + y^2 = 1$, $\frac{1}{x^2+y^2} \langle -y, x \rangle = \langle -y, x \rangle \Rightarrow$

$$\int_{C_i} \frac{1}{x^2+y^2} \langle -y, x \rangle \cdot d\mathbf{r} = \int_{C_i} \langle -y, x \rangle \, dr \Rightarrow$$

$$\frac{1}{x^2+y^2} \langle -y, x \rangle$$

is not path independant.

Show tab 3.

Let $\mathbf{r}(t), a \leq t \leq b$, parameterize a curve C.
We say C is **closed** if it begins & ends at the same point $\iff \mathbf{r}(a) = \mathbf{r}(b)$.

Draw two curves that are closed (one of which intersects itself) and one that isn’t.

Label $\mathbf{r}(a)$ & $\mathbf{r}(b)$ indicate which are closed.
Theorem.

\[\int_C \mathbf{F} \, d\mathbf{r} \text{ is path independant} \iff \int_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for every closed curve } C. \]

Proof.
Assume \(\mathbf{F} \) is path independant.
Let \(C \subset D \) be a closed oriented curve.

Draw & label \(C \). Add & label \(P, Q \) & \(C_i \) when appropriate.

Pick \(P \) & \(Q \) on \(C \).
Let \(C_1 \subset C \) be the path from \(P \) to \(Q \) & \(C_2 \) from \(Q \) to \(P \).
\(C_1 \) & \(-C_2\) both start at \(P \) & end at \(Q \)

\[\Rightarrow \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} \]
\[= \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{-C_2} \mathbf{F} \cdot d\mathbf{r} = 0 \]

To prove the converse,
join \(C_1 \) & \(-C_2\) into a closed path \(C \). \(\square \)
Let C be $x^2 + y^2 = 1$, oriented clockwise. Recall that $\int_C \langle -y, x \rangle \cdot \mathrm{d}r = -2\pi$.

We say $D \subset \mathbb{R}^n$ is **open** if:

It doesn’t contain any of its boundary points. \\
\Leftrightarrow There is a disk that lies in D around each point in D.

In practice: Defined by $<, >$, and/or \neq (not \leq, \geq, or $=$).

Example.

\[
\begin{align*}
 x^2 + y^2 &< 1 & x^2 + y^2 &< 1 & x^2 + y^2 &\leq 1 \\
 y &> 0 & y &\geq 0 & y &\geq 0
\end{align*}
\]

Draw each region.

Boundary:

$(x^2 + y^2 = 1 \land y \geq 1)$ and $(y = 0 \land -1 \leq x \leq 1)$.

Draw boundary & label regions open, closed, or neither.
We say $D \subset \mathbb{R}^n$ is **connected** if:
Any two points in D can be joined by a path in D.

In practice: Only one piece – won’t fall apart.

Draw two boxes; one w/ a complicated connected region and one w/ two disks.

Let \mathbf{F} be a vector field on $D \subset \mathbb{R}^n$.
Recall: \mathbf{F} is **conservative** iff $\mathbf{F} = \nabla g$ for some $g: D \rightarrow \mathbb{R}$.

Theorem (Fundamental Theorem of Line Integrals).

Given $g: C \rightarrow \mathbb{R}$,

$$
\int_C \nabla g \cdot d\mathbf{r} = g(\mathbf{r}(b)) - g(\mathbf{r}(a))
\Rightarrow
$$

Theorem.

\mathbf{F} conservative $\Rightarrow \int_C \mathbf{F} \cdot d\mathbf{r}$ is path independent.

Example. $\langle -y, x \rangle \not\in \frac{1}{x^2+y^2}\langle -y, x \rangle$ are not conservative.

Theorem.

If $D \subset \mathbb{R}^n$ is open & connected

$$
\int_C \mathbf{F} \cdot d\mathbf{r} \text{ is path independent } \iff \mathbf{F} \text{ is conservative.}
$$

If < 15 minutes remaining, skip to last page.
Why?
Fix \(P \in D \).

Given \(x \in \mathbb{R}^n \), define \(g(x) = \int_C \mathbf{F} \cdot d\mathbf{r} \),
where \(C \) is a curve from \(P \) to \(x \) in \(D \).

This is well-defined because \(D \) is connected &
\(\int_C \mathbf{F} \cdot d\mathbf{r} \) is path independant.

Claim: \(\nabla g = \mathbf{F} \)

Note: Suppose we know that \(\mathbf{F} = \nabla f \).
Let \(g(x) = f(x) - f(P) \) for all \(x \in \mathbb{R}^n \).
Then \(\nabla g = \nabla f = \mathbf{F} \) & \(g(P) = 0 \).
If \(C \) is a curve from \(P \) to \(x \), then
\[
g(x) = g(x) - g(P) = \int_C \nabla g \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r}.
\]
In practice:
Let \(\mathbf{F} = \langle P, Q \rangle \) be conservative.
To find \(f \) such that \(\nabla f = \mathbf{F} \):

1. Find \(h(x, y) \) with \(\frac{\partial h}{\partial x} = P \).
2. Find \(g(y) \) with \(\frac{\partial}{\partial y}(h + g) = Q \iff \frac{\partial g}{\partial y} = Q - \frac{\partial h}{\partial y} \).
3. Let \(f(x, y) = h(x, y) + g(y) \).

Example. \(\mathbf{F} = \langle \sin y, x \cos y + 2y \rangle \) is conservative.

Find \(f \) so that \(\nabla f = \mathbf{F} \).

1. Want \(h(x, y) \) with \(\frac{\partial h}{\partial x} = \sin y \).
 \(h(x, y) = x \sin y \).
2. Want \(g(y) \) with \(\frac{\partial g}{\partial y} = x \cos y + 2y - \frac{\partial}{\partial y}(x \sin y) = 2y \).
 \(g(y) = y^2 \).
3. \(f(x, y) = x \sin y + y^2 \).

Give explanation if time permits.

Why does this work?

\(h \) exists by assumption.

Then \(\frac{\partial}{\partial x}(f - h) = P - \frac{\partial f}{\partial x} = 0 \Rightarrow \)
\(f(x, y) = h(x, y) = g(y) \) for some \(g \).