Question 1.

Classify the critical points of \(f(x, y) = x^2 - 2xy + y \).

(A) One local maximum.
(B) One local minimum.
(C) One saddle point.
(D) One local minimum and one local maximum.
(E) Two local maximums.

If you’re done: Find the absolute maximum and minimum.
Absolute minima and maxima [14.7].

One variable:

\[f : [p, q] \to \mathbb{R} \text{ continuous} \]

\[\Rightarrow f \text{ has an absolute maximum at } a \in [p, q] \text{ s.t. either} \]

- \(a \) is a critical point, or
- \(a = p \) or \(q \).

Warning:

- False for \(f : \mathbb{R} \to \mathbb{R} \), e.g. \(f(x) = x \).
- False for \(f : (p, q) \to \mathbb{R} \), e.g. \(f(x) = x \).
- False if \(f \) is not continuous, e.g.

\[
f(x) = \begin{cases}
\frac{1}{x} & x \neq 0 \\
0 & x = 0
\end{cases}
\]

Graph \(f \).

Fix \(D \subset \mathbb{R}^2 \).

Draw a disk, a blob with a hole, and an infinite road.

\(D \) is bounded if it is contained in some disk.

Place checkmark/X near the bounded/unbounded regions.
(a, b) is a **boundary point** of D if every disk around (a, b) contains points in D and points that aren’t in D.

Draw region & P inside region, Q on boundary, and R outside it.

- Small disks around P only contain points in D
 ⇒ not in boundary.
- Small disks around R only contain points not in D
 ⇒ not in boundary.
- Any disk around Q contains points in D and not in D
 ⇒ in boundary.

A similar definition works for $D \subset \mathbb{R}$ or \mathbb{R}^3:

Question 2.

How many points are in the boundary of $[p, q)$?

(A) 0
(B) 1
(C) 2
(D) ∞

D is **closed** if it contains all of its boundary points.
Example. \(x^2 + y^2 \leq 1 \)

Draw region.

The boundary \(x^2 + y^2 = 1 \) is in \(D \)
\(\Rightarrow \) closed.

Example. \(x^2 + y^2 < 1 \)

Draw region.

The boundary \(x^2 + y^2 = 1 \) isn’t in \(D \).
\(\Rightarrow \) not closed.

Example. \([p, q] \in \mathbb{R} \) are closed, but \((p, q) \notin [p, q)\) aren’t.

In practice: \(D \) is closed if it’s defined by only:

\[f(x, y) \leq 0, \quad g(x, y) \geq 0 \quad \& \quad h(x, y) = 0. \]

(Not \(f(x, y) < 0 \) or \(g(x, y) > 0 \).)
Let
\[D = \begin{cases}
0 \leq x \leq 3 \\
0 \leq y \leq 2
\end{cases} . \]

Draw \(D \).

Question 3. \(D \) is...

(A) closed and bounded.
(B) closed but not bounded.
(C) bounded but not closed.
(D) not closed or bounded.

Given \(D \subset \mathbb{R}^2 \) & \(f : D \to \mathbb{R} \):

\(f \) has an **absolute maximum** (**minimum**) at \((a, b)\) if
\(f(x, y) \leq f(a, b) \) (\(f(x, y) \geq f(a, b) \)) for all \((x, y) \in D\).

Theorem (Extreme value theorem).
If \(f \) is continuous on \(D \subset \mathbb{R}^2 \) \& \(D \) is closed \& bounded
\[\Rightarrow \] \(f \) has an absolute max (min) at \((a, b)\), where either
- \((a, b)\) is a critical point of \(f \), or
- \((a, b)\) is on the boundary of \(D \).
Why?
If f has an absolute max at (a, b) & (a, b) is not on the boundary,
it must be a local max \Rightarrow critical point.

In practice:
(1) find all possible (a, b),
(2) compute $f(a, b)$ &
(3) pick the biggest.

Example. Find the absolute max & min of

$$f(x, y) = x^2 - 2xy + 2y$$
on $D = \begin{cases} 0 \leq x \leq 3 \\ 0 \leq y \leq 2 \end{cases}$

Draw D & add points as you proceed.

Critical points:
We already found the critical point.

$(1, 1) \in D$

$$f(1, 1) = 1$$

On left:
$$g(y) := f(0, y) = 2y \quad 0 \leq y \leq 2.$$
$$g'(y) = 2 \neq 0 \Rightarrow \text{no critical points.}$$
Endpoints:
\[f(0, 0) = 0 \quad \& \quad f(0, 2) = 4 \]

On right:
\[h(y) := f(3, y) = 9 - 6y + 2y = 9 - 4y \quad 0 \leq y \leq 2. \]
\[h'(y) = -4 \neq 0 \Rightarrow \text{no critical points}. \]
Endpoints:
\[f(3, 0) = 9 \quad \& \quad f(3, 2) = 1 \]

On bottom:
\[G(x) = f(x, 0) = x^2 \quad 0 \leq x \leq 3. \]
\[G'(x) = 2x = 0 \iff x = 0. \]
We already have \((0, 0)\) & endpoints.

On top:
\[H(x) = f(x, 2) = x^2 - 4x + 2 \quad 0 \leq x \leq 3. \]
\[H'(x) = 2x - 4 = 0 \iff x = 2 \]
\[f(2, 2) = 2 \]
Can also argue from geometry.

Example. Find the point(s) on the graph \(z = \sqrt{x^2 + y^2} \) that are closest to and/or farthest from \((4, 2, 0)\).

Question 4.
(A) There’s a closest point & a farthest point.
(B) There’s a closest point but no farthest point.
(C) There’s a farthest point & but no closest point.
(D) There’s no closest point or farthest point.
Consider the distance squared from \((x, y, \sqrt{x^2 + y^2})\) to \((4, 2, 0)\):

\[
f(x, y) = (x - 4)^2 + (y - 2)^2 = (\sqrt{x^2 + y^2} - 0)^2 = x^2 - 8x + 16 + y^2 - 4y + 3 + x^2 + y^2 = 2x^2 - 2y^2 - 8x - 4y + 20
\]

\[
f_x = 4x - 8 = 0 \Rightarrow x = 2
\]
\[
f_y = 4y - 4 = 0 \Rightarrow y = 1
\]

\[
\Rightarrow z = \sqrt{2^2 + 1} = \sqrt{5}
\]

\[
\Rightarrow (2, 1, \sqrt{5}) \text{ is the only critical point}
\]
\[
\Rightarrow \text{it’s the closest point.}
\]