MATH 412, FALL 2012 - HOMEWORK 13

WARMUP PROBLEMS: Section 6.3 #1, 3, 4, 16. Section 7.1 #1, 2, 4, 5, 6. Do not write these up!

EXTRA PROBLEMS: Section 6.3: #5, 6, 10, 11, 15, 17, 21, 24, 26, 30. Section 7.1: #9, 10, 11, 12, 14, 17, 18, 19, 22, 26. Do not write these up!

WRITTEN PROBLEMS: Do five of the following six. Due Wednesday, December 5.

1. **Short proof of the Five Color Theorem.**
 a) Let \(v \) be a 5-vertex in a plane graph \(G \). Let \(x \) and \(y \) be nonadjacent neighbors of \(v \), and let \(G' \) be the graph obtained from \(G \) by contracting the edges \(vx \) and \(vy \). Prove that if \(G' \) is 5-colorable, then \(G \) is 5-colorable.
 b) Use part (a) to give a short inductive proof of the Five Color Theorem.

2. Without using the Four Color Theorem, prove that every outerplanar graph is 3-colorable. Apply this to prove the Art Gallery Theorem: If an art gallery is laid out as a simple polygon with \(n \) sides, then it is possible to place \(\lfloor n/3 \rfloor \) guards such that every point of the interior is visible to some guard. For \(n \geq 3 \), construct a polygon that requires \(\lceil n/3 \rceil \) guards.

3. The **thickness** of a graph \(G \) is the minimum number of planar graphs needed to partition \(E(G) \).
 a) Prove that if \(G \) has thickness 2, then \(\chi(G) \leq 12 \).
 b) For \(r \) even and \(s \) greater than \((r - 2)^2/2 \), prove that the thickness of \(K_{r,s} \) is \(r/2 \).

4. Suppose that \(m \) and \(n \) are odd. Prove that in all drawings of \(K_{m,n} \), the parity of the number of pairs of nonincident edges that cross an odd number of times is the same. Conclude that \(\nu(K_{m,n}) \) is odd when \(m - 3 \) and \(n - 3 \) are divisible by 4 and even otherwise.

5. Use Tutte’s 1-factor Theorem to prove that every connected line graph of even order has a perfect matching. Conclude from this that every simple connected graph of even size decomposes into paths of length 2. (Comment: Exercise 3.3.23 shows that every connected claw-free graph has a perfect matching; that stronger result is more difficult than this.)

6. **Density conditions for \(\chi'(G) > \Delta(G) \).**
 a) Prove that if \(n(G) = 2m + 1 \) and \(e(G) > m \cdot \Delta(G) \), then \(\chi'(G) > \Delta(G) \).
 b) Prove that if \(G \) is obtained from a \(k \)-regular graph with \(2m + 1 \) vertices by deleting fewer than \(k/2 \) edges, then \(\chi'(G) > \Delta(G) \).
 c) Prove that if \(G \) is obtained by subdividing an edge of a regular graph with \(2m \) vertices and degree at least 2, then \(\chi'(G) > \Delta(G) \).