1. For a connected graph \(G \) with at least three vertices, prove that the following statements are equivalent (use of Menger’s Theorem is permitted).
 A) \(G \) is 2-edge-connected.
 B) Every edge of \(G \) appears in a cycle.
 C) \(G \) has a closed trail containing any specified pair of edges.
 D) \(G \) has a closed trail containing any specified pair of vertices.

2. Let \(v \) be a vertex of a 2-connected graph \(G \). Prove that \(v \) has a neighbor \(u \) such that \(G - u - v \) is connected.

3. Let \(G \) be a graph without isolated vertices. Prove that if \(G \) has no even cycles, then every block of \(G \) is an edge or an odd cycle.

4. Suppose that \(\kappa(G) = k \) and \(\text{diam } G = d \). Prove that \(n(G) \geq k(d - 1) + 2 \) and \(\alpha(G) \geq \lceil (1 + d)/2 \rceil \). For each \(k \geq 1 \) and \(d \geq 2 \), construct a graph with connectivity \(k \) and diameter \(d \) for which equality holds in both bounds.

5. A vertex \(k \)-split of a graph \(G \) is a graph \(H \) obtained from \(G \) by replacing one vertex \(x \in V(G) \) by two adjacent vertices \(x_1, x_2 \) such that \(d_H(x_i) \geq k \) and that \(N_H(x_1) \cup N_H(x_2) = N_G(x) \cup \{x_1, x_2\} \).
 a) Prove that every vertex \(k \)-split of a \(k \)-connected graph is \(k \)-connected.
 b) Conclude that any graph obtained from a “wheel” \(W_n = K_1 \vee C_{n-1} \) (Definition 3.3.6) by a sequence of edge additions and vertex 3-splits on vertices of degree at least 4 is 3-connected. (Comment: Tutte [1961b] proved also that every 3-connected graph arises in this way. The characterization does not extend easily for \(k > 3 \).)

6. Given a graph \(G \), let \(D \) be the digraph obtained by replacing each edge with two oppositely-directed edges having the same endpoints (thus \(D \) is the symmetric digraph with underlying graph \(G \)). Assume that for all \(x, y \in V(D) \) both \(\kappa'_D(x, y) = \lambda'_D(x, y) \) and \(\kappa_D(x, y) = \lambda_D(x, y) \) hold, the latter applying only when \(x \nleftrightarrow y \). Use this hypothesis to prove that also \(\kappa'_G(x, y) = \lambda'_G(x, y) \) and \(\kappa_G(x, y) = \lambda_G(x, y) \), the latter for \(x \leftrightarrow y \).