1. Prim’s Algorithm grows a spanning tree from a given vertex of a connected weighted graph \(G \), iteratively adding the cheapest edge from a vertex already reached to a vertex not yet reached, finishing when all the vertices of \(G \) have been reached. (Ties are broken arbitrarily.) Prove that Prim’s Algorithm produces a minimum-weight spanning tree of \(G \).

2. Let \(T \) be a minimum-weight spanning tree in \(G \), and let \(T' \) be another spanning tree in \(G \). Prove that \(T' \) can be transformed into \(T \) by a list of steps that exchange one edge of \(T' \) for one edge of \(T \), such that the edge set is always a spanning tree and the total weight never increases.

3. Prove that the following algorithm correctly finds the diameter of a tree. First, run BFS from an arbitrary vertex \(w \) to find a vertex \(u \) at maximum distance from \(w \). Next, run BFS from \(u \) to reach a vertex \(v \) at maximum distance from \(u \). Report \(\text{diam} \, T = d(u,v) \).

4. Two people play a game on a graph \(G \), alternately picking vertices. Player 1 starts at any vertex. Each subsequent choice must be adjacent to the preceding choice (of the other player) and not used before. Thus together they follow a path. The last player who moves wins. Prove that the second player has a winning strategy if \(G \) has a perfect matching, and otherwise the first player has a winning strategy. (Hint: Be careful about the second part!)

5. Use the König–Egerváry Theorem to prove that every bipartite graph \(G \) has a matching of size at least \(e(G)/\Delta(G) \). Use this to conclude that every subgraph of \(K_{n,n} \) with more than \((k-1)n \) edges has a matching of size at least \(k \).

6. In an \(X,Y \)-bigraph \(G \), the deficiency of a set \(S \) is \(\text{def}(S) = |S| - |N(S)| \); note that \(\text{def}(\emptyset) = 0 \). Prove that \(\alpha'(G) = |X| - \max_{S \subseteq X} \text{def}(S) \). (Hint: Form a bipartite graph \(G' \) such that \(G' \) has a matching that saturates \(X \) if and only if \(G \) has a matching of the desired size, and prove that \(G' \) satisfies Hall’s Condition.)