1. Let G be a group. \[|G| = 45 \] Show that G is solvable.

If H be a Sylow 3-subgroup in G. By Sylow I, \[|H| = 9 \]

Let k be the number of distinct Sylow 3-subgroups in G.

By Sylow III, k divides 5 and $k \equiv 1 \mod 3$.

Therefore $k = 1$, By Sylow II, H is a normal subgroup.

Since $|H| = 9$ and $|G/H| = 5$, both H and G/H are abelian, therefore solvable. This implies G is also solvable.

2. Let G be a nilpotent group. Let H be a proper subgroup of G.

Show that $H \triangleleft N_G(H)$.

If G is nilpotent, there exists n such that

$G = G^{(0)} = G^{(1)} = \ldots = G^{(n)} = \{e\}$, where $G^{(i+1)} = [G^{(i)}, G]$. G is a proper subgroup. There exists an integer m such that $G^{(m)} \leq H$ and $G^{(m-1)} \not\leq H$.

take $x \in G_{m(n)} \setminus H$

for any $y \in H$ \hspace{1cm} xyxy^{-1} \in G_{m(n)} \setminus H$

therefore $xyx^{-1} \in H$ \hspace{1cm} so $xHx^{-1} \subseteq H$

The same argument works for x^{-1} \hspace{1cm} so $x^{-1}Hx \subseteq H$

therefore $xHx^{-1} = H$ \hspace{1cm} $x \in N_G(H)$

Since $x \in H$, this shows that $H \trianglelefteq N_G(H)$

$xHx^{-1} \subseteq H$ won't imply that $x \in N_G(H)$