HOMEWORK I

1. Consider the group \mathbb{Q}/\mathbb{Z}. Let $c_m = \text{image of } \frac{1}{m} \text{ in } \mathbb{Q}/\mathbb{Z}$ ($m > 0$) and $\langle c_m \rangle$ denote the cyclic subgroup generated by c_m.
 a) Show $\ldots \langle c_m \rangle \subsetneq \langle c_{m+1} \rangle \subsetneq \ldots$.
 b) Let $\mathbb{Z}(p^\infty) = \bigcup_{m=1}^{\infty} \langle c_m \rangle$. Show that every proper subgroup of $\mathbb{Z}(p^\infty)$ is of the form $\langle c_m \rangle$ for some $m > 0$.
 c) Show that $\mathbb{Z}(p^\infty)/(c_m) \cong \mathbb{Z}(p^\infty)$.

2. Let G be a group and let $Z(G)$ denote its center. Prove that if $G/Z(G)$ is cyclic then G is abelian.

3. Let $G = A_4$ - the normal subgroup consisting of even permutations of S_4. Show that G cannot have a subgroup of order 6.
 Hint: If such a subgroup H exists, then show that H is normal and for every $\sigma \in G$, $\sigma^2 \in H$.