The gravitational field between a mass M concentrated at the point (x, y, z) and a mass m concentrated at the point (x_0, y_0, z_0) is

$$\vec{F} = -\frac{GMm}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} \left(\frac{x-x_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} \hat{i} + \frac{y-y_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} \hat{j} + \frac{z-z_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}} \hat{k} \right).$$

The gravitational potential V of \vec{F} is

$$V = -\frac{GMm}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}.$$

We have seen in class that $\vec{F} = \nabla V$. Now suppose that, instead of a point mass M, we have a solid region W of density $\delta(x, y, z)$ and total mass M. The gravitational potential of W acting on the point mass m may be found by looking at "infinitesimal" point masses $dm = \delta(x, y, z)dV$ and adding (via integration) their individual potentials. That is, the potential of W is

$$V(x_0, y_0, z_0) = -\int\int\int_W \frac{G\delta(x, y, z) dV}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}.$$

In the following exercises, let W be the region between two concentric sphere of radii $a < b$, centered at the origin. (see the following picture.) Assume that W has total mass M and constant density δ. The object of the following exercises is to compute the gravitational potential $V(x_0, y_0, z_0)$ of W on a mass m concentrated at (x_0, y_0, z_0). Note that, by spherical symmetry, there is no loss of generality in taking (x_0, y_0, z_0) equal to $(0, 0, r)$. So, in particular, r is the distance from the point mass m to the center of W.

![Diagram](image)

1. Show that if $r > b$, then $V(0, 0, r) = -\frac{GMm}{r}$. This is exactly the same gravitational potential as if all the mass M of W is concentrated at the origin. This is a key result of Newtonian mechanics. (Hint: use spherical coordinates and integrate with respect to φ before integrating with respect to ρ.)

2. Show that if $r < a$, then there is no gravitational force. (Hint: Show that $V(0, 0, r)$ is actually independent of r. Then relate the gravitational potential to gravitational force. As in the previous question, use spherical coordinates and integrate with respect to φ before integrating with respect to ρ.)

3. Find $V(0, 0, r)$ if $a < r < b$, and relate your answer with the previous questions.

Solution. The gravitational potential on the point mass m at $(0, 0, r)$ on z-axis is simply given by the integral

$$V(0, 0, r) = -\int\int\int_W \frac{G\delta dV}{\sqrt{x^2 + y^2 + z^2 - 2rz + r^2}} = -\int\int\int_W \frac{G\delta dV}{\sqrt{x^2 + y^2 + z^2 - 2rz + r^2}},$$

where G, m, δ are all constants. In spherical coordinates, this is

$$V(0, 0, r) = -\int_{\theta=0}^{\theta=2\pi} \int_{\rho=a}^{\rho=b} \int_{\varphi=0}^{\varphi=\pi} \frac{G\delta}{\sqrt{\rho^2 - 2r\rho\cos\varphi + r^2}} \rho^2 \sin\varphi d\varphi d\rho d\theta.$$
In order to integrate this, we do a substitution for the inner integral. Let \(u = \rho^2 - 2r\rho \cos \varphi + r^2 \), so \(du = 2r \sin \varphi \, d\varphi \) and \(\frac{du}{2r} = \rho \sin \varphi \, d\varphi \). We have

\[
V(0, 0, r) = -\frac{Gm\delta}{2r} \int_{\theta=0}^{\varphi=\pi} \int_{\rho=a}^{\rho=b} \frac{Gm\delta}{\sqrt{u}} \frac{\rho}{2r} \, du \, d\theta
\]

1. If \(r > b \), then \(r > \rho \) for all \(\rho \in [a, b] \). And \(|\rho + r| = \rho + r \) and \(|\rho - r| = r - \rho \). So

\[
V(0, 0, r) = -\frac{Gm\delta}{r} \int_{\theta=0}^{\varphi=\pi} \int_{\rho=a}^{\rho=b} \rho \cdot \left(\rho + r - (\rho - r) \right) \, d\rho \, d\theta
\]

\[
= -\frac{Gm\delta}{r} \int_{\theta=0}^{\varphi=\pi} \int_{\rho=a}^{\rho=b} 2\rho^2 \, d\rho \, d\theta
\]

\[
= -\frac{Gm\delta}{r} \int_{\theta=0}^{\varphi=\pi} \left[\frac{2}{3} \rho^3 \right]_{\rho=a}^{\rho=b} \, d\theta
\]

\[
= -\frac{Gm\delta}{r} \cdot \frac{2}{3} (b^3 - a^3) 2\pi
\]

\[
= -\frac{Gm\delta}{r} \cdot \frac{4}{3} \pi (b^3 - a^3)
\]

But \(\frac{4}{3} \pi (b^3 - a^3) \) is the volume of the region \(W \). So \(\delta \cdot \frac{4}{3} \pi (b^3 - a^3) = M \) and \(V(0, 0, r) = -\frac{GmM}{r} \)

2. If \(r < a \), then \(r < \rho \) for all \(\rho \in [a, b] \). And \(|\rho + r| = \rho + r \) and \(|\rho - r| = \rho - r \). So

\[
V(0, 0, r) = -\frac{Gm\delta}{r} \int_{\theta=0}^{\varphi=\pi} \int_{\rho=a}^{\rho=b} \rho \cdot \left(\rho + r - (\rho - r) \right) \, d\rho \, d\theta
\]

\[
= -\frac{Gm\delta}{r} \int_{\theta=0}^{\varphi=\pi} \int_{\rho=a}^{\rho=b} 2\rho \cdot r \, d\rho \, d\theta
\]

\[
= -Gm\delta \int_{\theta=0}^{\varphi=\pi} \left[\rho^2 \right]_{\rho=a}^{\rho=b} \, d\theta
\]

\[
= -Gm\delta \cdot \frac{2}{3} \pi (b^3 - a^3),
\]

which is independent of \(r \) (i.e. a constant function.) Therefore, the gravity \(\vec{F}(0, 0, r) = \nabla V = (0, 0, 0) \).

3. If \(a \leq r \leq b \), then \(|\rho + r| = \rho + r \) and

\[
|\rho - r| = \begin{cases} r - \rho & a \leq \rho \leq r \\ \rho - r & r \leq \rho \leq b \end{cases}
\]
This gives us

\[V(0, 0, r) = -\frac{Gm\delta}{r} \int_{\theta=0}^{\theta=2\pi} \int_{\rho=a}^{\rho=b} \rho \cdot \left(|\rho + r| - |\rho - r| \right) d\rho d\theta \]

\[= -\frac{Gm\delta}{r} \cdot 2\pi \left[\int_{\rho=a}^{\rho=r} \rho \cdot \left(|\rho + r| - |\rho - r| \right) d\rho + \int_{\rho=r}^{\rho=b} \rho \cdot \left(|\rho + r| - |\rho - r| \right) d\rho \right] \]

\[= -\frac{Gm\delta}{r} \cdot 2\pi \left[\int_{\rho=a}^{\rho=r} \rho \cdot \rho + (\rho + r - (\rho - r)) d\rho + \int_{\rho=r}^{\rho=b} \rho \cdot \rho + (\rho + r - (\rho - r)) d\rho \right] \]

\[= -\frac{Gm\delta}{r} \cdot 2\pi \left[\int_{\rho=a}^{\rho=r} 2\rho^2 d\rho + \int_{\rho=r}^{\rho=b} 2\rho \cdot r d\rho \right] \]

\[= -\frac{Gm\delta}{r} \cdot 2\pi \left[\int_{\rho=a}^{\rho=r} 2\rho^2 d\rho + \int_{\rho=r}^{\rho=b} 2\rho \cdot r d\rho \right] \]

\[= -\frac{Gm\delta}{r} \cdot 2\pi \left[\frac{2}{3} (r^3 - a^2) + (b^2 - r^2) \cdot r \right] \]

\[= -\frac{Gm\delta}{r} \cdot \frac{4}{3} \pi (r^3 - a^2) - Gm\delta \cdot 2\pi (b^2 - r^2) r \]