1. Let \(f(x, y) = xy + x - 2y - 2 \), where \(x(t) = 1 + t, y(t) = 2 - t \). Compute \(\frac{df}{dt}(1) \).

2. Let \(f(x, y) = xy \), where \(x(s, t) = s + t, y(s, t) = s - t \). Compute \(\frac{\partial f}{\partial t}(1, 1) \).

3. Suppose that \(z = x^2 + y^3 \), where \(x = st \) and \(y \) is a function of \(s \) and \(t \). Suppose further that when \((s, t) = (2, 1) \), \(\frac{\partial y}{\partial t} = 0 \). Determine \(\frac{\partial z}{\partial t}(2, 1) \).

4. Suppose that \(z = f(x, y) \) has continuous partial derivatives. Let \(x = e^r \cos \theta, y = e^r \sin \theta \). Show that then

\[
\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = e^{-2r} \left[\left(\frac{\partial z}{\partial r} \right)^2 + \left(\frac{\partial z}{\partial \theta} \right)^2 \right]
\]

5. If \(\omega = g(u^2 - v^2, v^2 - u^2) \) has continuous partial derivatives with respect to \(x = u^2 - v^2 \) and \(y = v^2 - u^2 \), show that

\[
v \frac{\partial \omega}{\partial u} + u \frac{\partial \omega}{\partial v} = 0
\]

6. Suppose that \(y \) is defined implicitly as a function \(y(x) \) by an equation of the form

\[F(x, y) = 0 \]

(For example, the equation \(x^3 - y^2 = 0 \) defines as two functions of \(x \), namely \(y = x^{3/2} \) and \(y = -x^{3/2} \). The equation \(\sin(xy) - x^2y^7 + e^y = 0 \), on the other hand, cannot readily be solved for \(y \) in terms of \(x \), and hence only defined implicitly.)

(a) Show that if \(F \) and \(y(x) \) are both assumed to be differentiable, then

\[
\frac{dy}{dx} = \frac{F_x(x, y)}{F_y(x, y)} = -\frac{\partial F}{\partial x} \left/ \frac{\partial F}{\partial y} \right.
\]

provided \(F_y(x, y) \neq 0 \). (Hint: use the chain rule to differentiate \(F(x, y(x)) \) with respect to \(x \).)

(b) Use the result of part (a) to find \(\frac{dy}{dx} \) when \(y \) is defined implicitly in terms of \(x \) by the equation \(x^3 - y^2 = 0 \). Check your result by explicitly solving for \(y \) and differentiating.