1. Let S denote the unit sphere. The surface area of S may be computed as the flux of the normal vector field \mathbf{n} field through S as follows:

$$\text{Area}(S) = \iint_S 1 \, dS = \iint_S \mathbf{n} \cdot \mathbf{n} \, dS.$$

Use the Divergence Theorem to compute $\text{Area}(S)$ as a triple integral.

2. Let S be the portion of the cylinder of radius 2 about the x-axis where $-1 \leq x \leq 1$.

(a) Draw a picture of S and compute its area without doing any integrals.

(b) Find a parameterization $r(u, v)$ of S.

(c) Does the normal vector field associated to your parameterization point into or out of S? First try to determine this without doing any calculations, and then check your answer by evaluating $r_u \times r_v$.

(d) If necessary, change your parameterization so that the normal vector field points inwards.

(e) Now consider the vector field $\mathbf{F} = \langle -z, xz, -xy \rangle$. Compute $\text{curl} \mathbf{F}$.

(f) Check that $\text{curl} \mathbf{F}$ is the sum of $G = \langle -2x, -1, 0 \rangle$ and $H = \langle 0, y, z \rangle$.

(g) Use geometric arguments to determine whether the flux of G is positive, zero, or negative. Remember that we have oriented S so that the normals point inwards. Do the same for $\text{curl} \mathbf{F}$.

(h) Using your parameterization, directly compute the flux of $\text{curl} \mathbf{F}$.

(i) Check your answer in (h) using Stokes’ Theorem. Note here that ∂S has two boundary components.

(j) Check your answer in (h) a second time by using what you learned in (g) to compute the flux of G and H.

3. Let $\mathbf{F} = \langle y^2, x^2, z^2 \rangle$. Show that

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two closed curves as shown lying on a cylinder about the z-axis.
4. Consider the surface S shown below, which is oriented using the outward pointing normal.

(a) Suppose F is a vector field on \mathbb{R}^3 which is equal to curl G for some unknown vector field G. Suppose the line integral of G around the unit circle (oriented counter-clockwise) in the xy-plane is 25. Determine the flux of F through S.

(b) Suppose H is a vector field on \mathbb{R}^3 which is equal to curl B for some unknown vector field B. If $H(x, y, 0) = \mathbf{k}$, find the flux of H through the surface S.

5. Consider the surface T which is the intersection of the plane $x + 2y + 3z = 1$ with the first octant.

(a) Draw a picture of T.

(b) Use Stokes’ Theorem to evaluate $\int_{\partial T} F \cdot dr$ for $F = \langle y, -2z, 4x \rangle$. Here, you should orient ∂T counterclockwise when viewed from $(2, 2, 2)$.

6. If time remains, repeat problem 1 for the torus parameterized by

$$(x, y, z) = \left((2 + \cos \theta) \cos \phi, (2 + \cos \theta) \sin \phi, \sin \theta \right), \quad 0 \leq \theta, \phi \leq 2\pi.$$