1. Consider the ellipsoid with implicit equation
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \]
(a) Parameterize this ellipsoid.
(b) Set up, but do not evaluate, a double integral that computes its surface area.

2. Let \(S \) be the surface in \(\mathbb{R}^3 \) parameterized by
\[\mathbf{r}(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u), \]
where \(0 \leq u \leq 2\pi \) and \(0 \leq v \leq 2\pi \).
(a) Sketch the surface \(S \). Do not use a calculator, laptop, phone, or any other electronic device for help.
(b) Use your parameterization in part (a) to compute the surface area of S.

3. Consider the surface integral
\[\int \int_{\Sigma} z \, dS \]
where Σ is the surface with sides S_1 given by the cylinder $x^2 + y^2 = 1$, S_2 given by the unit disk in the xy-plane, and S_3 given by the plane $z = x + 1$. Evaluate this integral as follows:

(a) Parameterize S_1 using (θ, z) coordinates.

(b) Evaluate the integral over the surface S_2 without parameterizing.

(c) Parameterize S_3 in (Des)cartesian coordinates and evaluate the resulting integral using polar coordinates.
4. Let C be the circle in the plane with equation $x^2 + y^2 - 2x = 0$.

(a) Parameterize C as follows. For each choice of a slope t, consider the line L_t whose equation is $y = tx$. Then the intersection $L_t \cap C$ of L_t and C contains two points, one of which is $(0, 0)$. Find the other point of intersection, and call its x- and y-coordinates $x(t)$ and $y(t)$. Compute a formula for $\mathbf{r}(t) = (x(t), y(t))$.

(b) Suppose that $t = \frac{p}{q}$ is a rational number. Show that $x(p/q)$ and $y(p/q)$ are also rational numbers. Explain how, by clearing denominators in $x(p/q) - 1$ and $y(p/q)$, you can find a triple of integers $U, V,$ and W for which $U^2 + V^2 = W^2$.

(c) Compute $\int_C \frac{1}{2} (-y, x) \cdot d\mathbf{r}$ using your parameterization above. Use Green's theorem to interpret the value of this integral.