1 Harmonic functions

1. Yesterday in lecture we saw that if a function \(f(z) = u(x, y) + i v(x, y) \) has a complex derivative, that the functions \(u \) and \(v \) (from \(\mathbb{R}^2 \to \mathbb{R} \)) satisfy the Cauchy-Riemann equations

\[
u_x = v_y, \quad u_y = -v_x.\]

(a) A function \(h: \mathbb{R}^2 \to \mathbb{R} \) is called harmonic if it has continuous 2nd order partial derivatives and satisfies \(h_{xx} + h_{yy} = 0 \). Use the Cauchy-Riemann equations to show that both \(u \) and \(v \) are harmonic.

(b) Let \(h: D \to \mathbb{R} \) be a harmonic function on the open unit disc. Using the 2nd derivative test, show that \(h \) cannot attain a maximum value at a point \(P \) of \(D \) unless all the second order partials of \(h \) vanish at \(P \). (In fact \(h \) must be constant, but this is more subtle)

(c) Show that \(u(x, y) = x^3 - 3xy^2 \) is a harmonic function.

(d) Find a harmonic function \(v(x, y) \) such that \(u \) and \(v \) satisfy the Cauchy-Riemann equations. What is the corresponding function \(f(z) \)?

Solutions.

(a) From the Cauchy-Riemann equations, we have \(u_{xx} = v_{yx} = v_{xy} = -u_{yy} \), so \(u \) is harmonic. Similarly, \(v_{xx} = -u_{yx} = -u_{xy} = -v_{yy} \), so \(v \) is harmonic.

(b) We apply the second derivative test to get

\[
\text{det} \begin{bmatrix} h_{xx} & h_{xy} \\ h_{yx} & h_{yy} \end{bmatrix} = h_{xx}h_{yy} - h_{xy}^2 = -h_{xx}^2 - h_{xy}^2 \leq 0.
\]

If this quantity is negative at a critical point \(P \), then \(h \) has a saddle at \(P \). Otherwise, \(-h_{xx}(P)^2 - h_{xy}(P)^2 = 0\), so that \(h_{xx}(P) = h_{yy}(P) = h_{xy}(P) = 0 \).

(c) Since \(u_{xx} = 6x \) and \(u_{yy} = -6x \), \(u_{xx} + u_{yy} = 0 \).

(d) The function \(v \) must satisfy

\[
\nabla v = (v_x, v_y) = (-u_y, u_x) = (6xy, 3x^3 - 3y^2).
\]

In other words, we are looking for a potential function for this vector field

\[
v = \int 6xy \, dx = 3x^2y + c_1(y),
\]

\[
v = \int (3x^3 - 3y^2) \, dy = 3x^2y - y^3 + c_2(x).
\]

Putting these together gives \(v(x, y) = 3x^2y - y^3 + c \). Then

\[
f(z) = (x^3 - 3xy^2) + i(3x^2y - y^3) = (x + iy)^3 = z^3.
\]
2 Double integrals

This section contains material that we will go over more in the next lecture, but detailed instructions are provided to help guide you.

If R is a region in the plane, and f is a function $\mathbb{R}^2 \to \mathbb{R}$, then the integral $\iint_R f \, dA$ calculates the (signed) volume between surface $z = f(x, y)$ and the xy-plane. When $R = [a, b] \times [c, d]$ is a rectangle, this can be computed by iterating single integrals in either of the following ways:

$$\iint_R f \, dA = \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy.$$

2. Evaluate the double integral as an iterated integral in both orders and check that you get the same value:

$$\iint_R xe^y \, dA$$

where $R = \{(x, y) \mid -1 \leq x \leq 2, 0 \leq y \leq 3\}$.

Solution. We can evaluate the integral with the bounds in either order:

$$\iint_R xe^y \, dA = \int_0^3 \int_{-1}^2 xe^y \, dy \, dx = \int_0^3 \left. \frac{1}{2}x^2e^y \right|_{x=-1}^{x=2} \, dy = \frac{3}{2} \int_0^3 e^y \, dy = \frac{3}{2} \left. e^y \right|_{y=0}^{y=3} = \frac{3}{2}(e^3 - 1),$$

or

$$\iint_R xe^y \, dA = \int_{-1}^2 \int_0^3 xe^y \, dy \, dx = \int_{-1}^2 xe^y \left|_{y=3}^{y=0} \right. \, dx = (e^3 - 1) \int_{-1}^2 x \, dx = (e^3 - 1) \left. \frac{1}{2}x^2 \right|_{x=-1}^{x=2} = \frac{3}{2}(e^3 - 1).$$

Since xe^y is of the form $f(x)g(y)$ and the bounds are rectangular, we could also split the integral to begin with:

$$\iint_R xe^y \, dA = \int_{-1}^2 x \, dx \cdot \int_0^3 e^y \, dy = \frac{3}{2} \cdot (e^3 - 1).$$

3. Let R be the triangular region bounded by the lines $y = x$, $x = 1$ and $y = 0$. The double integral

$$\iint_R x^2 + xy + 2 \, dA$$

represents the volume of the region D between the graph $z = x^2 + xy + 2$ and the triangle R. The goal of this exercise is to compute this in terms of a new kind of iterated integral in which the limits of integration for the “inner” integral can depend on the “outer” variable.

(a) Sketch the triangle.

(b) For each fixed x with $0 \leq x \leq 1$, we can slice through R (and D) at that fixed x value, which cuts through R with a line $x =$ constant. Draw one such line through the triangle.

(c) As functions of $x \in [0, 1]$, find the y coordinates of the bottom and the top of the arc of intersection of the line with R.

(d) For each \(x \in [0,1] \), there is an integral that computes the area \(A(x) \) of the corresponding slice of \(D \) (the part of \(D \) that lies over the arc of \(R \)).

\[
A(x) = \int_x^1 x^2 + xy + 2 \, dy
\]

Find the limits of integration (hint: they depend on \(x \)).

(e) The volume of \(D \) is given as the integral

\[
Vol(D) = \int_R x^2 + xy + 2 \, dA = \int_0^1 A(x) \, dx.
\]

Compute the value.

(f) Repeat steps (b) - (e) reversing the roles of \(x \) and \(y \).

Solution.

(a) and (b):

(c) The bottom arc is \(y = 0 \) and the top arc is \(y = x \).

(d) \(A(x) = \int_0^x (x^2 + xy + 2) \, dy \)

(e) Evaluating the area function from part (d) gives

\[
A(x) = \int_0^x (x^2 + xy + 2) \, dy = \left[x^2 y + \frac{1}{2} xy^2 + 2 y \right]_{y=0}^{y=x} = \frac{3}{2} x^3 + 2x,
\]

and so

\[
Vol(D) = \int_0^1 A(x) \, dx = \int_0^1 \left(\frac{3}{2} x^3 + 2x \right) \, dx = \left[\frac{3}{8} x^4 + x^2 \right]_{x=0}^{x=1} = \frac{11}{8}.
\]

(f) Here the picture looks like this:
The line segment travels from the bottom arc \(x = y \) to the top arc \(x = 1 \), so our cross-sectional area function is

\[
A(y) = \int_y^1 (x^2 + xy + 2) \, dx = \left[\frac{1}{3} x^3 + \frac{1}{2} x^2 y + 2x \right]_{x=y}^{x=1} = \frac{1}{6} (-5y^3 - 9y + 14),
\]
and the volume of \(D \) is

\[
\text{Vol}(D) = \int_0^1 A(y) \, dy = \frac{1}{6} \int_0^1 (-5y^3 - 9y + 14) \, dy = \frac{1}{6} \left[-\frac{5}{4} y^4 - \frac{9}{2} y^2 + 14y \right]_{y=0}^{y=1} = \frac{11}{8}.
\]

4. Let \(R \) be the region between the graph \(y = 1 - x^2 \) and the \(x \)-axis in the \(xy \)-plane.

(a) Sketch the region \(R \).

Solution:

(b) Following the steps outlined in the previous exercise, we can find an iterated integral to compute the double integral

\[
\iint_{R} x + y \, dA = \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} x + y \, dy \, dx.
\]
Decide what goes in the boxes.

Solution:

\[\iint_R x + y \, dA = \int_{-1}^{1} \int_{0}^{1-x^2} x + y \, dy \, dx\]

(c) Write down an iterated integral in the other order. (hint: be sure to look at the sketch of \(R \))

Solution:

\[\iint_R x + y \, dA = \int_{0}^{1} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} x + y \, dx \, dy\]

(d) Compute the double integral using either iterated integral.

Solution:

\[
\begin{align*}
\iint_R x + y \, dA &= \int_{-1}^{1} \int_{0}^{1-x^2} x + y \, dy \, dx \\
&= \left[xy + \frac{y^2}{2} \right]_{0}^{1-x^2} \, dx \\
&= \int_{-1}^{1} x(1-x^2) + \frac{(1-x^2)^2}{2} \, dx \\
&= \int_{-1}^{1} x - x^3 + \frac{1}{2} - \frac{2x^2}{2} + \frac{x^4}{2} \, dx = \frac{8}{15}
\end{align*}
\]

5. If

\[\iint_R f(x, y) \, dA = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y) \, dy \, dx\]

what is the region \(R \)?

Solution: A circle with center (0,0) and radius 2: