1 Harmonic functions

1. Yesterday in lecture we saw that if a function $f(z) = u(x, y) + i v(x, y)$ has a complex derivative, that the functions u and v (from $\mathbb{R}^2 \to \mathbb{R}$) satisfy the Cauchy-Riemann equations

$$u_x = v_y, \quad u_y = -v_x.$$

(a) A function $h: \mathbb{R}^2 \to \mathbb{R}$ is called harmonic if it has continuous 2nd order partial derivatives and satisfies $h_{xx} + h_{yy} = 0$. Use the Cauchy-Riemann equations to show that both u and v are harmonic.

(b) Let $h: D \to \mathbb{R}$ be a harmonic function on the open unit disc. Using the 2nd derivative test, show that h cannot attain a maximum value at a point P of D unless all the second order partials of h vanish at P. (In fact h must be constant, but this is harder to prove)

(c) Show that $u(x, y) = x^3 - 3xy^2$ is a harmonic function.

(d) Find a harmonic function $v(x, y)$ such that u and v satisfy the Cauchy-Riemann equations. What is the corresponding function $f(z)$?

2 Double integrals

This section contains material that we will go over more in the next lecture, but detailed instructions are provided to help guide you.

If R is a region in the plane, and f is a function $\mathbb{R}^2 \to \mathbb{R}$, then the integral $\iint_R f \, dA$ calculates the (signed) volume between surface $z = f(x, y)$ and the xy-plane. When $R = [a, b] \times [c, d]$ is a rectangle, this can be computed by iterating single integrals in either of the following ways:

$$\iint_R f \, dA = \int_a^b \left(\int_c^d f(x, y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) dy.$$

2. Evaluate the double integral as an iterated integral in both orders and check that you get the same value:

$$\iint_R xe^y \, dA$$

where $R = \{(x, y) \mid -1 \leq x \leq 2, 0 \leq y \leq 3\}$.
3. Let R be the triangular region bounded by the lines $y = x$, $x = 1$ and $y = 0$. The double integral

$$\iint_R x^2 + xy + 2 \, dA$$

represents the volume of the region D between the graph $z = x^2 + xy + 2$ and the triangle R. The goal of this exercise is to compute this in terms of a new kind of iterated integral in which the limits of integration for the “inner” integral can depend on the “outer” variable.

(a) Sketch the triangle.

(b) For each fixed x with $0 \leq x \leq 1$, we can slice through R (and D) at that fixed x value, which cuts through R with a line $x = \text{constant}$. Draw one such line through the triangle.

(c) As functions of $x \in [0,1]$, find the y coordinates of the bottom and the top of the arc of intersection of the line with R.

(d) For each $x \in [0,1]$, there is an integral that computes the area $A(x)$ of the corresponding slice of D (the part of D that lies over the arc of R).

$$A(x) = \int \int \ldots$$

Find the limits of integration (hint: they depend on x).

(e) The volume of D is given as the integral

$$Vol(D) = \iint_R x^2 + xy + 2 \, dA = \int_0^1 A(x) \, dx.$$

Compute the value.

(f) Repeat steps (b) - (e) reversing the roles of x and y.

4. Let R be the region between the graph $y = 1 - x^2$ and the x–axis in the xy-plane.

(a) Sketch the region R.

(b) Following the steps outlined in the previous exercise, we can find an iterated integral to compute the double integral

$$\iint_R x + y \, dA = \int_1^0 \int \ldots$$

Decide what goes in the boxes.

(c) Write down an iterated integral in the other order. (hint: be sure to look at the sketch of R)

(d) Compute the double integral using either iterated integral.

5. If

$$\iint_R f(x,y) \, dA = \int_2^{-2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x,y) \, dy \, dx$$

what is the region R?