Isoperimetric inequalities for eigenvalues of triangles

Bartłomiej Siudeja

Purdue University

19 September 2007
Outline

1 Introduction
 - Notation and classical results
 - New results

2 Symmetrization techniques
 - Steiner symmetrization
 - Continuous Steiner symmetrization
 - Polarization

3 Proofs
 - Freitas’s lower bound
 - Improved lower bound
 - Isosceles triangles
 - Circular sectors
 - Monotonicity
Eigenvalues

Let D be an open set. Eigenvalues λ_i of the Dirichlet Laplacian on D will be called eigenvalues of D. They form a nondecreasing sequence such that $0 < \lambda_1 < \lambda_2$.
Eigenvalues

Let D be an open set. Eigenvalues λ_i of the Dirichlet Laplacian on D will be called eigenvalues of D. They form a nondecreasing sequence such that $0 < \lambda_1 < \lambda_2$.

Geometric quantities

- A - area of D
- R - inradius
- L - perimeter
- d - diameter
- $\lambda_D = \lambda_1$ - first eigenvalue of D

Triangles

- h - altitude perpendicular to the longest side
- γ - smallest angle
Classical isoperimetric inequality

Among all domains with fixed area A, the ball minimizes perimeter L.

$$L^2 \geq 4\pi A.$$
Classical isoperimetric inequality
Among all domains with fixed area A, the ball minimizes perimeter L.

$$L^2 \geq 4\pi A.$$

Theorem (Faber-Krahn inequality)
Among all domains with fixed area A, the ball minimizes the first eigenvalue.

$$\lambda_{P(n)} A \geq \lambda_{R(n)} A.$$

(Proved for triangles and quadrilaterals.)
Classical isoperimetric inequality

Among all domains with fixed area A, the ball minimizes perimeter L.

$$L^2 \geq 4\pi A.$$

Theorem (Faber-Krahn inequality)

Among all domains with fixed area A, the ball minimizes the first eigenvalue.

Pólya’s isoperimetric conjecture

Among all polygons $P(n)$ with n sides and fixed area A, the regular polygon $R(n)$ minimizes the first eigenvalue.

$$\lambda_{P(n)}A \geq \lambda_{R(n)}A.$$

(Proved for triangles and quadrilaterals.)
Known eigenvalues

- ball
- rectangles
- annuli
- circular sectors
- equilateral triangle
- right triangles with angles $\pi/4$ or $\pi/6$
Known eigenvalues

- ball
- rectangles
- annuli
- circular sectors
- equilateral triangle
- right triangles with angles $\pi/4$ or $\pi/6$

Methods of obtaining lower bounds

- Domain monotonicity (larger domain \rightarrow smaller eigenvalue)
- Restricting to a subdomain (right isosceles triangle is a half of a square)
- Special analytical cases
- Symmetrization
Theorem (Freitas ’06)

For arbitrary triangle T

$$
\lambda_T \geq \pi^2 \left(\frac{4}{d^2} + \frac{d^2}{4A^2} \right).
$$
Theorem (Freitas ’06)

For arbitrary triangle T

$$\lambda_T \geq \pi^2 \left(\frac{4}{d^2} + \frac{d^2}{4A^2} \right).$$

Theorem

$$\lambda_T \geq \pi^2 \left(\frac{4}{d^2 + h^2} + \frac{d^2 + h^2}{4A^2} \right).$$
Theorem (Freitas ’06)

For arbitrary triangle T

$$
\lambda_T \geq \pi^2 \left(\frac{4}{d^2} + \frac{d^2}{4A^2} \right).
$$

Theorem

$$
\lambda_T \geq \pi^2 \left(\frac{4}{d^2 + h^2} + \frac{d^2 + h^2}{4A^2} \right).
$$

Theorem

Let T be a triangle with fixed area A and smallest angle γ. Then the eigenvalue λ_T is decreasing with diameter d.
Theorem

The eigenvalue λ_T of an isosceles triangle T with area A and smallest angle γ is bigger than the eigenvalue of a sector with the same area and angle.
Theorem

The eigenvalue λ_T of an isosceles triangle T with area A and smallest angle γ is bigger than the eigenvalue of a sector with the same area and angle.

Theorem

Given fixed area A, the eigenvalue of an isosceles triangle decreases when the smallest angle γ increases.
Theorem

The eigenvalue λ_T of an isosceles triangle T with area A and smallest angle γ is bigger than the eigenvalue of a sector with the same area and angle.

Theorem

Given fixed area A, the eigenvalue of an isosceles triangle decreases when the smallest angle γ increases. The same is true for right triangles.
Definition of Steiner symmetrization

Fix a line \(l \) and domain \(D \).

Action on triangles

- Preserves area
- Decreases perimeter
- Decreases the first eigenvalue
Definition of Steiner symmetrization

Fix a line I and domain D. Consider cross-sections of a domain D perpendicular to I.

Action on triangles

- Preserves area
- Decreases perimeter
- Decreases the first eigenvalue
Definition of Steiner symmetrization

Fix a line I and domain D. Consider cross-sections of a domain D perpendicular to I. The Steiner symmetrization of D is the domain D^* formed by the cross-sections centered around I.

Action on triangles
Definition of Steiner symmetrization

Fix a line I and domain D. Consider cross-sections of a domain D perpendicular to I. The Steiner symmetrization of D is the domain D^* formed by the cross-sections centered around I.

Action on triangles

- Preserves area
- Decreases perimeter
- Decreases the first eigenvalue

Bartłomiej Siudeja (Purdue University)
Isoperimetric inequalities for eigenvalues
19 September 2007
Definition of Steiner symmetrization

Fix a line l and domain D. Consider cross-sections of a domain D perpendicular to l. The Steiner symmetrization of D is the domain D^* formed by the cross-sections centered around l.

Action on triangles

- preserves area
- decreases perimeter
- decreases the first eigenvalue
Definition of continuous Steiner symmetrization

Let \(0 \leq t \leq 1 \) be a time parameter. Let \(D^0 \) equal to initial domain \(D \), and \(D^1 \) equal to the Steiner symmetrization \(D^* \).

Action on triangles

\[
D = D^0 \\
D^1 = D^*
\]
Definition of continuous Steiner symmetrization

Let $0 \leq t \leq 1$ be a time parameter. Let D^0 equal to initial domain D, and D^1 equal to the Steiner symmetrization D^*. For $0 < t < 1$ we define a continuous Steiner symmetrization as a domain formed by the cross-sections at time t (partially shifted proportionally to t).

Action on triangles

$D = D^0 \rightarrow D^t \rightarrow D^1 = D^*$
Definition of continuous Steiner symmetrization

Let $0 \leq t \leq 1$ be a time parameter. Let D^0 equal to initial domain D, and D^1 equal to the Steiner symmetrization D^*. For $0 < t < 1$ we define a continuous Steiner symmetrization as a domain formed by the cross-sections at time t (partially shifted proportionally to t).

Action on triangles

$D = D^0$ \hspace{1cm} D^t \hspace{1cm} $D^1 = D^*$

As t increases:
- area remains fixed
- perimeter decreases
- the first eigenvalue decreases
Definition of polarization

Fix a domain D and a line l. This line splits the space into two half-spaces H_1 and H_2. Let D' be a reflection of D about l. The polarization D^p of a set D consists of $D \cap H_1$, $D' \cap H_1$ and any point from $(D \cup D') \cap H_2$ such that its reflection is already included.

Action on triangles

D

D'

l
Definition of polarization

Fix a domain D and a line l. This line splits the space into two half-spaces H_1 and H_2. Let D' be a reflection of D about l. The polarization D^p of a set D consists of $D \cap H_1$, $D' \cap H_1$ and any point from $(D \cup D') \cap H_2$ such that its reflection is already included.

Action on triangles

D, D', D^p, l
Definition of polarization

Fix a domain D and a line l. This line splits the space into two half-spaces H_1 and H_2. Let D' be a reflection of D about l. The polarization D^P of a set D consists of $D \cap H_1$, $D' \cap H_1$ and any point from $(D \cup D') \cap H_2$ such that its reflection is already included.

Action on triangles

- preserves area
- decreases perimeter
- decreases the first eigenvalue
Alternative proof of Freitas’s bound

Steps

1. Steiner symmetrization with respect to l_1.
Alternative proof of Freitas’s bound

Steps

2. Polarization with respect to l_2.

A B C

α

l_2
Alternative proof of Freitas’s bound

Steps

2. Polarization with respect to l_2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15
Alternative proof of Freitas’s bound

Steps
3. Polarization with respect to l_3.
Alternative proof of Freitas’s bound

Steps

3. Polarization with respect to l_3.
Alternative proof of Freitas's bound

Steps

4. The same procedure on the other side
Steps

5. \(\lambda_T \geq \lambda_R = \pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) = \pi^2 \left(\frac{4}{d^2} + \frac{d^2}{4A^2} \right) \)
Improved lower bound using rectangles

Steps
- Start with an already symmetrized triangle.
Improved lower bound using rectangles

Steps

- Start with an already symmetrized triangle.
- Steiner symmetrization with respect to the longest side.
Improved lower bound using rectangles

Steps
- Start with an already symmetrized triangle.
- Steiner symmetrization with respect to the longest side.
- Steiner symmetrization with respect to the altitude.
Improved lower bound using rectangles

\[\lambda_T \geq \lambda_R = \pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) = \pi^2 \left(\frac{4}{d^2 + h^2} + \frac{d^2 + h^2}{4A^2} \right) \]

Steps

- Start with an already symmetrized triangle.
- Steiner symmetrization with respect to the longest side.
- Steiner symmetrization with respect to the altitude.
We want to fit a gray triangle with area A inside a red one with area $A + \varepsilon$. Then by the scaling property we can take a limit $\varepsilon \to 0$. This shows that given area A and the smallest angle γ, the eigenvalue decreases with diameter.
Symmetrization into isosceles triangles

We need to define a sequence of polarizations with respect to certain bisectors.
Symmetrization into isosceles triangles

We need to define a sequence of polarizations with respect to certain bisectors.
Symmetrization into isosceles triangles

We need to define a sequence of polarizations with respect to certain bisectors.
Symmetrization into isosceles triangles

We need to define a sequence of polarizations with respect to certain bisectors.
We need to define a sequence of polarizations with respect to certain bisectors.
We need to define a sequence of polarizations with respect to certain bisectors.
We need to define a sequence of polarizations with respect to certain bisectors.
Symmetrization into isosceles triangles

The reversed sequence of reflections gives a valid sequence of polarizations.
Symmetrization into circular sector
Proofs

Circular sectors

Bartłomiej Siudeja (Purdue University)

Isoperimetric inequalities for eigenvalues

19 September 2007

14 / 15
Monotonicity for isosceles triangles
Monotonicity for isosceles triangles

Continuous Steiner symmetrization with respect to l_1.
Monotonicity for isosceles triangles

- Continuous Steiner symmetrization with respect to l_1.
- Continuous Steiner symmetrization with respect to l_2.