Your name: ___________________________ Your NetID: __________________________

- No notes, books, or electronics out or hats or sunglasses on during the exam.
- You must show your work on all questions. This means show the work that an average Math 241 student would reasonably require.
- Do not guess on multiple choice problems—you will receive one point on any multiple choice problem left blank.

Mark your discussion Section in the table below:

<table>
<thead>
<tr>
<th>Discussion Section</th>
<th>Instructor</th>
<th>Time (TuTh)</th>
<th>Discussion Section</th>
<th>Instructor</th>
<th>Time (TuTh)</th>
<th>Discussion Section</th>
<th>Instructor</th>
<th>Time (TuTh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Hockensmith</td>
<td>8am</td>
<td>BDA</td>
<td>Field</td>
<td>8am</td>
<td>CDA</td>
<td>Compaan</td>
<td>8am</td>
</tr>
<tr>
<td>ADB</td>
<td>Garland</td>
<td>9am</td>
<td>BDB</td>
<td>Field</td>
<td>9am</td>
<td>CDB</td>
<td>Compaan</td>
<td>9am</td>
</tr>
<tr>
<td>ADC</td>
<td>Aranyan</td>
<td>10am</td>
<td>BDC</td>
<td>McDonald</td>
<td>10am</td>
<td>CDC</td>
<td>Tiao</td>
<td>10am</td>
</tr>
<tr>
<td>ADD</td>
<td>Aranyan</td>
<td>11am</td>
<td>BDD</td>
<td>McDonald</td>
<td>11am</td>
<td>CDD</td>
<td>Weigandt</td>
<td>11am</td>
</tr>
<tr>
<td>ADE</td>
<td>Yi</td>
<td>12pm</td>
<td>BDE</td>
<td>Wang</td>
<td>12pm</td>
<td>CDE</td>
<td>Tian</td>
<td>12pm</td>
</tr>
<tr>
<td>ADF</td>
<td>Yi</td>
<td>1pm</td>
<td>BDF</td>
<td>Ford</td>
<td>1pm</td>
<td>CDF</td>
<td>Gondolo</td>
<td>1pm</td>
</tr>
<tr>
<td>ADG</td>
<td>Song</td>
<td>2pm</td>
<td>BDG</td>
<td>Donepudi</td>
<td>2pm</td>
<td>CDG</td>
<td>Golze</td>
<td>2pm</td>
</tr>
<tr>
<td>ADH</td>
<td>Tran</td>
<td>3pm</td>
<td>BDH</td>
<td>Romney</td>
<td>3pm</td>
<td>CDH</td>
<td>Golze</td>
<td>3pm</td>
</tr>
<tr>
<td>ADI</td>
<td>Tran</td>
<td>4pm</td>
<td>BDI</td>
<td>Romney</td>
<td>4pm</td>
<td>CDI</td>
<td>Gondolo</td>
<td>4pm</td>
</tr>
<tr>
<td>ADJ</td>
<td>Huo</td>
<td>9am</td>
<td>BDJ</td>
<td>Pruittt</td>
<td>8am</td>
<td>CDJ</td>
<td>Taha</td>
<td>8am</td>
</tr>
<tr>
<td>ADK</td>
<td>Song</td>
<td>9am</td>
<td>BDK</td>
<td>Pruittt</td>
<td>9am</td>
<td>CDK</td>
<td>Taha</td>
<td>9am</td>
</tr>
<tr>
<td>ADL</td>
<td>Garland</td>
<td>10am</td>
<td>BDL</td>
<td>Wang</td>
<td>10am</td>
<td>CDL</td>
<td>Hong</td>
<td>10am</td>
</tr>
<tr>
<td>ADM</td>
<td>Huo</td>
<td>11am</td>
<td>BDM</td>
<td>Gao</td>
<td>11am</td>
<td>CDM</td>
<td>Hong</td>
<td>11am</td>
</tr>
<tr>
<td>ADN</td>
<td>Lu</td>
<td>12pm</td>
<td>BDN</td>
<td>Ford</td>
<td>2pm</td>
<td>CDN</td>
<td>Toprak</td>
<td>12pm</td>
</tr>
<tr>
<td>ADO</td>
<td>Lu</td>
<td>1pm</td>
<td>BDO</td>
<td>Donepudi</td>
<td>3pm</td>
<td>CDO</td>
<td>Toprak</td>
<td>1pm</td>
</tr>
<tr>
<td>AD1</td>
<td>Wise</td>
<td>11am</td>
<td>BDP</td>
<td>Gao</td>
<td>4pm</td>
<td>CDP</td>
<td>Pynn-Coates</td>
<td>2pm</td>
</tr>
<tr>
<td>AD2</td>
<td>Loeb</td>
<td>9am</td>
<td></td>
<td></td>
<td></td>
<td>CDQ</td>
<td>Pynn-Coates</td>
<td>3pm</td>
</tr>
<tr>
<td>AD3</td>
<td>Michelle</td>
<td>3pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. (7 points) Rewrite the triple integral

\[\int_{0}^{2} \int_{x}^{2} \int_{1}^{3-y} z^2 \, dz \, dy \, dx \]

using the different order of integration specified below.

\[\begin{cases} 0 \leq x \leq 2 \\ x \leq y \leq 2 \\ 1 \leq z \leq 3-y \end{cases} \quad \text{is the same as} \quad \begin{cases} 0 \leq x \leq y \leq 2 \\ 1 \leq z \leq 3-y \end{cases} \]

\[\int_{0}^{2} \int_{x}^{2} \int_{1}^{3-y} z^2 \, dz \, dy \, dx = \int \int \int z^2 \, dx \, dz \, dy \]

\[\begin{array}{ccc} 2 & 3-y & y \\ 0 & 1 & 0 \end{array} \]
2. (4 points) The volume of a region R is calculated as a triple integral in spherical coordinates as

$$\iiint_{R} dV = \int_{1}^{2} \int_{\pi/2}^{\pi/2} \int_{\pi/2}^{\pi} \rho^2 \sin \phi \ d\theta \ d\phi \ d\rho.$$

Circle the picture of the region R.
3. (8 points) Consider the vector field \(\mathbf{F}(x, y, z) = (xz, e^y - yz, \cos x) \).

(a) Find \(\text{curl} \, \mathbf{F} \).

\[
\text{curl} \, \mathbf{F} = \begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
xz & e^y - yz & \cos x \\
\end{vmatrix} = (\frac{\partial}{\partial y} (\cos x) - \frac{\partial}{\partial z} (e^y - yz)) \mathbf{i} \\
-(\frac{\partial}{\partial x} (xz) - \frac{\partial}{\partial z} (x^2)) \mathbf{j} + (\frac{\partial}{\partial x} (e^y yz) - \frac{\partial}{\partial y} (x^2)) \mathbf{k} \\
= (-e^y + y) \mathbf{i} + (\sin x + x) \mathbf{j}
\]

(b) Find \(\text{div} \, \mathbf{F} \).

\[
\text{div} \, \mathbf{F} = \frac{\partial}{\partial x} (xz) + \frac{\partial}{\partial y} (e^y - yz) + \frac{\partial}{\partial z} (\cos x) = 2 - 2 = 0
\]

(a) Does there exist a function \(f \) with \(\nabla f = \mathbf{F} \)? Circle the correct response.

Yes \(\boxed{\text{No}} \) We do not have enough information.

If \(\mathbf{F} \) were conservative, then we'd have \(\text{curl} \, \mathbf{F} = 0 \). But \(\text{curl} \, \mathbf{F} \neq 0 \),

thus \(\mathbf{F} \) is not conservative.
4. (4 points) Let \(B \) be the region in the plane bounded by the smooth, simple closed curve \(C \) drawn below, where \(C \) is oriented counterclockwise.

Which of the integrals below computes the area of \(B \)? Circle your response.

By Green's Theorem
\[
\int_C x \, dx = \int_C x \, dx + y \, dy = \iint_B \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = 0
\]
\[
\frac{1}{2} \int_C y \, dx + x \, dy = \frac{1}{2} \int_B \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = 0
\]
\[
\int_C 2xe^{y} \, dx + x(1+xe^{y}) \, dy = \int_B \left(\frac{\partial (x+xe^{y})}{\partial x} - \frac{\partial (2xe^{y})}{\partial y} \right) \, dA = \int_B (1+2xe^{y}-2xe^{y}) \, dA = \int_B 1 \, dA = \text{Area}(B)
\]

\[
\int_C 2xe^{y} \, dx + x(1+xe^{y}) \, dy \quad \frac{1}{2} \int_C y \, dx + x \, dy \quad \int_C x \, dx \quad \text{None of these}
\]

5. (4 points) The vector field \(F \) on \(\mathbb{R}^3 \)

is shown in the \(xy \)-plane and looks the same in all other horizontal planes.

Circle the best completion of the sentence below.

The divergence of \(F \)...

...is positive ...

...is negative.

...points up.

...points left.

...is zero.
6. (8 points) Consider the region \(R \) bound by a parallelogram shown at the right.

(a) Circle the transformation \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) sending the unit square \([0, 1] \times [0, 1]\) onto the region \(R \).

All five transformations below are of the form \(T(u,v) = (au + bv, cu + dv) \), so they satisfy \(T(0, 0) = (0,0) \). We need either
\[
\begin{align*}
T(0,1) &= (2,4) = (b,d) \\
T(1,0) &= (6,1) = (a,c) \\
T(1,1) &= (8,5) \\
T(u,v) &= (2u+6v, 4u+v)
\end{align*}
\]

\[
T(u, v) =\begin{cases}
(6u + v, 2u + 4v) & \text{if } T(0,0) = (0,0) \\
(6u - 2v, u + 4v) & \text{if } T(0,0) = (0,0) \\
(6u + v, 4u + 2v) & \text{if } T(0,0) = (0,0) \\
(6u + 2v, 4u + v) & \text{if } T(0,0) = (0,0) \\
(6u + 4v, u + 2v) & \text{if } T(0,0) = (0,0)
\end{cases}
\]

(b) Suppose \(D \) is the triangle with vertices \((6, 1), (2, 4), (8, 5)\). Change coordinates using the transformation \(T \) found above to calculate the integral. Circle the correct answer. If you left (a) blank, clearly specify one of the choices for \(T \) here and calculate using that, assuming it takes the unit square to \(R \).

\[
T(u,v) = (6u + 2v, u + 4v) = (x, y)
\]

\[
\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} 6 & 2 \\ 1 & 4 \end{vmatrix} = 22
\]

\[
\iint_D (x-y) dA = \iint_0^1 \left(\frac{1}{5}\left(6u + 2v - u - 4v\right) \right) 22 \, dv
\]

\[
\iint_D x - y \, dA = \int_0^1 \int_0^1 F(u,v) \, dv \, du
\]

\[
F(u,v) = \begin{cases}
88u - 66v & \text{if } u = 0 \\
110u - 44v & \text{if } u = 1 \\
16u - 8v & \text{if } u = 0 \\
4u + 2v & \text{if } u = 1 \\
40u + 16v & \text{if } u = 1
\end{cases}
\]
7. (7 points) Let S be the surface parameterized by \(\mathbf{r}(u, v) = (v^2 - u^2, u, v) \) with \(\{(u, v) \mid -2 \leq u \leq 2 \text{ and } -2 \leq v \leq 2\} \)

(a) Circle the picture of S.

(b) The surface area of S is calculated by the integral \(A(S) = \int_{-2}^{2} \int_{-2}^{2} F(u, v) \, du \, dv \).

Circle the correct expression for \(F(u, v) \).

\[
\begin{align*}
\mathbf{r}_u &= \langle -2u, 1, 0 \rangle, \quad \mathbf{r}_v = \langle 2v, 0, 1 \rangle \\
\mathbf{r}_u \times \mathbf{r}_v &= \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2u & 1 & 0 \\
2v & 0 & 1 \\
\end{vmatrix} = \mathbf{i}(2) - \mathbf{j}(-2) + \mathbf{k}(0) = 2 \mathbf{i} + 2 \mathbf{j}
\end{align*}
\]

\(F(u, v) \, du \, dv = |\mathbf{r}_u \times \mathbf{r}_v| \, du \, dv = \sqrt{1 + 4u^2 + 4v^2} \, du \, dv
\]

(c) Circle the correct response:

The integral \(\iint_S x^2 (y - 5) \, dS \) is \(\text{positive} \)\(\text{negative} \) \(\text{zero} \)

because \(y - 5 = u - 5 \leq 2 - 5 < 0 \) and \(x^2 (y - 5) < 0 \) on \(S \), except on the "thin" set \(\{(0, u, \pm u) \mid -\frac{5}{2} \leq u \leq \frac{5}{2}\} \).
8. (8 points) Find a parameterization \(\mathbf{r}(u, v) \) for each of the surfaces described below. Use \(u, v \) as your parameters, and specify the domain \(D \) of the parameterization.

Important: The domain \(D \) must be a rectangle.

(a) The part of the surface \(z = (1 - x^2)(4 - y^2) \) where \(z \geq 0 \) and \(-2 \leq y \leq 2 \).

If \(-2 < y < 2 \) then \(y^2 < 4 \) and \(4 - y^2 > 0 \). Hence \(z > 0 \) amounts to
\[1 - x^2 \geq 0, \text{ that is } -1 \leq x \leq 1 \] and \(D = [-1, 1] \times [-2, 2] \).
\[\mathbf{r}(u, v) = (u, v, (1-u^2)(4-v^2)), \quad -1 \leq u \leq 1, \quad -2 \leq v \leq 2. \]

\[\mathbf{r}(u, v) = \begin{pmatrix} u \\ v \\ (1-u^2)(4-v^2) \end{pmatrix} \]
\[D = \left\{ (u, v) \mid -1 \leq u \leq 1 \text{ and } -2 \leq v \leq 2 \right\} \]

(b) The part of the cylinder \(x^2 + z^2 = 9 \) that lies between the planes \(y = 0 \) and \(y = 1 \), and for which \(z \geq 0 \).

\[\begin{aligned}
 x &= 3 \cos u \\
 z &= 3 \sin u \\
 y &= v
\end{aligned} \]
\[0 \leq u \leq 2\pi \text{ and } z \geq 0 \text{ implies } 0 \leq u \leq \pi \]
\[0 \leq v \leq 1 \]

\[\mathbf{r}(u, v) = \begin{pmatrix} 3 \cos u \\ v \\ 3 \sin u \end{pmatrix} \]
\[D = \left\{ (u, v) \mid 0 \leq u \leq \pi \text{ and } 0 \leq v \leq 1 \right\} \]