MATH 595: CATEGORICAL LOGIC (FALL 2019)

Instructor: Ruiyuan (Ronnie) Chen

Time and location: 2–3:30pm in 44 English Building

Course description: Broadly speaking, a logic consists of syntactical expressions (e.g., “∀x ≠ 0 ∃y (xy = 1)”), rules for manipulating them, and rules for giving them mathematical meaning. Categorical logic provides a framework for addressing the question: how well does the syntax of a logic match its semantics? That is, is every semantic “thing” (be it truth or data) syntactically expressible, and irredundantly so? In the best cases, the syntax of a logic is encoded in an algebraic structure which is precisely equivalent to the space of all possible semantics via a duality theorem. We will study several instances of this phenomenon, including

- Stone duality for propositional logic/Boolean algebras/Stone spaces;
- Gabriel–Ulmer duality for Cartesian logic/finitely complete categories/locally finitely presentable categories;
- Makkai duality for first-order logic/pretoposes/ultracategories;
- (time permitting) Joyal–Tierney representation theory, $\mathcal{L}_{\kappa\omega}$, and Grothendieck toposes, and/or other topics of interest to participants.

Each such duality theorem manifests simultaneously as a very strong completeness/definability theorem for the logic, a representation theorem for the syntactic algebra, and an axiomatization of the “function algebra” on the corresponding space of possible semantics.

Prerequisites:

- being comfortable with general abstract structures (monoids, posets, etc.) and related notions (homomorphisms, presentations, etc.)
- basic familiarity with point-set topology
- some background in category theory would be helpful but will not be assumed; we will cover everything needed during the course
- ditto for model theory

Course material: I will be posting course notes online. The notes will contain some optional (but highly recommended) exercises. Grading will be based on attendance.

1versions include the “Lindenbaum–Tarski algebra” and “syntactic category”
2sometimes called “strong conceptual completeness”