Symmetry beyond groups

Rui Loja Fernandes

May, 2004

Main Reference:

http://www.math.ist.utl.pt/~rfern/
1. Introduction

Why groupoids?
Usual Credo:

Symmetry = Group Theory
Usual Credo:

Symmetry = Group Theory

In this talk:

Symmetry ≠ Group Theory
Usual Credo:

Symmetry = Group Theory

In this talk:

Symmetry ≠ Group Theory

Symmetry = Groupoid Theory
Basic Remark:

Many objects which we recognize as symmetric admit few or no non-trivial symmetries.
Basic Remark:

Many objects which we recognize as symmetric admit few or no non-trivial symmetries.

Groupoids allow one to fix this.
2. Usual credo...

symmetries = groups
A **group** is a set G together with a **multiplication**

$$G \times G \to G$$

$$(g_1, g_2) \mapsto g_1g_2$$

satisfying:
A group is a set G together with a multiplication

$$G \times G \rightarrow G$$

$$(g_1, g_2) \mapsto g_1g_2$$

satisfying:

- **Associativity.** For all $g_1, g_2, g_3 \in G$:

 $$(g_1g_2)g_3 = g_1(g_2g_3).$$
A **group** is a set G together with a **multiplication**

$$G \times G \rightarrow G$$

$$(g_1, g_2) \mapsto g_1 g_2$$

satisfying:

- **Associativity.** For all $g_1, g_2, g_3 \in G$:

 $$(g_1 g_2) g_3 = g_1 (g_2 g_3).$$

- **Identity.** There exists an element $e \in G$:

 $$ge = eg = e.$$
A **group** is a set \(G \) together with a **multiplication**

\[
G \times G \rightarrow G
\]

\[
(g_1, g_2) \mapsto g_1 g_2
\]

satisfying:

- **Associativity.** For all \(g_1, g_2, g_3 \in G \):

\[
(g_1 g_2) g_3 = g_1 (g_2 g_3).
\]

- **Identity.** There exists an element \(e \in G \):

\[
ge e = e g = e.
\]

- **Inverse.** For all \(g \in G \) there exists \(g^{-1} \in G \):

\[
g g^{-1} = g^{-1} g = e.
\]
Main example: group of isometries of \mathbb{R}^n
Main example: group of isometries of \mathbb{R}^n

If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

$$d(x, y) \equiv ||x - y|| = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}.$$
Main example: group of isometries of \mathbb{R}^n

If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

$$d(x, y) \equiv \|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The **Euclidean group** is:

$$E(n) = \{ \phi : \mathbb{R}^n \rightarrow \mathbb{R}^n : d(\phi(x), \phi(y)) = d(x, y), \forall x, y \in \mathbb{R}^n \}$$
Main example: group of isometries of \mathbb{R}^n

If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

\[
d(x, y) \equiv ||x - y|| = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}.
\]

The Euclidean group is:

\[E(n) = \{\phi : \mathbb{R}^n \to \mathbb{R}^n : d(\phi(x), \phi(y)) = d(x, y), \forall x, y \in \mathbb{R}^n\}\]

with multiplication composition of isometries:

\[E(n) \times E(n) \to E(n)\]

\[(\phi_1, \phi_2) \mapsto \phi_1 \circ \phi_2.\]
Group of isometries of \mathbb{R}^n (cont.)

Every isometry $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^TA = I.$$
Group of isometries of \mathbb{R}^n (cont.)

Every isometry $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^TA = I.$$

ISOMETRY = ORTHOGONAL TRANSFORMATION + TRANSLATION
Group of isometries of \mathbb{R}^n (cont.)

Every isometry $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^TA = I.$$

ISOMETRY = ORTHOGONAL TRANSFORMATION + TRANSLATION

Remark:

A **proper isometry** is an isometry which preserves orientation $\iff \phi(x) = Ax + b$ with $\det A = 1$.

The Euclidean group has some familiar **subgroups**:
The Euclidean group has some familiar **subgroups**:

- **The group of translations**:

 \[\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \} , \]
 \[\simeq \{ b \in \mathbb{R}^n \} . \]
The Euclidean group has some familiar subgroups:

- The group of translations:
 \[\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \} , \]
 \[\simeq \{ b \in \mathbb{R}^n \} . \]

- The orthogonal group:
 \[O(n) = \{ \phi \in E(n) : \phi \text{ is a orth. transf.} \} , \]
 \[\simeq \{ A : AA^T = A^T A = I \} . \]
The Euclidean group has some familiar subgroups:

- **The group of translations:**
 \[\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \},\]
 \[\simeq \{ b \in \mathbb{R}^n \} .\]

- **The orthogonal group:**
 \[O(n) = \{ \phi \in E(n) : \phi \text{ is a orth. transf.} \},\]
 \[\simeq \{ A : AA^T = A^T A = I \} .\]

- **The special orthogonal group** ("rotations"):\[SO(n) = \{ \phi \in O(n) : \phi \text{ is proper} \}\]
 \[\simeq \{ A : AA^T = A^T A = I, \ \det A = 1 \} .\]
Symmetries
Symmetries

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is

$$G_{\Omega} \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega \}.$$
Symmetries

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is

$$G_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega \} .$$

Often, one describes only the group of proper symmetries

$$\tilde{G}_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega, \ \phi \text{ is proper} \} .$$
Symmetries

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is

$$G_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega \}.$$

Often, one describes only the group of proper symmetries

$$\tilde{G}_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper} \}.$$

Philosophic principle:
An object is symmetric if it has many symmetries.
Symmetries

If $\Omega \subset \mathbb{R}^n$, the **group of symmetries of** Ω is

$$G_{\Omega} \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega \}.$$

Often, one describes only the **group of proper symmetries**

$$\tilde{G}_{\Omega} \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper} \}.$$

Philosophic principle:
An object is symmetric if it has *many* symmetries.
Symmetries

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is

$$G_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega \} .$$

Often, one describes only the group of proper symmetries

$$\tilde{G}_\Omega \equiv \{ \phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper} \} .$$

Philosophic principle:
An object is symmetric if it has many symmetries.

$$G_\Omega = O(n)$$

$$\tilde{G}_\Omega = SO(n)$$
Example: Tiling by rectangles of \mathbb{R}^2
Example: Tiling by rectangles of \mathbb{R}^2

Take $\Omega \subset \mathbb{R}^2$ the tiling of \mathbb{R}^2 by 2 : 1 rectangles:

What is the group of symmetries G_Ω?
Example: Tiling by rectangles of \mathbb{R}^2 (cont.)

The group G_Ω consists of:
Example: Tiling by rectangles of \mathbb{R}^2 (cont.)

The group G_Ω consists of:

- Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

 $$(x, y) \mapsto (x, y) + (2n, m), \quad n, m \in \mathbb{Z}.$$
Example: Tiling by rectangles of \mathbb{R}^2 (cont.)

The group G_Ω consists of:

- Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

 $$\begin{align*}
 (x, y) &\mapsto (x, y) + (2n, m), \quad n, m \in \mathbb{Z}.
 \end{align*}$$

- Reflections through points in $\frac{1}{2} \Lambda = \mathbb{Z} \times \frac{1}{2} \mathbb{Z}$:

 $$\begin{align*}
 (x, y) &\mapsto (n - x, m/2 - y), \quad n, m \in \mathbb{Z}.
 \end{align*}$$
Example: Tiling by rectangles of \mathbb{R}^2 (cont.)

The group G_Ω consists of:

- Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:
 $$(x, y) \mapsto (x, y) + (2n, m), \quad n, m \in \mathbb{Z}.$$

- Reflections through points in $\frac{1}{2}\Lambda = \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:
 $$(x, y) \mapsto (n - x, m/2 - y), \quad n, m \in \mathbb{Z}.$$

- Reflections through horizontal and vertical lines:
 $$(x, y) \mapsto (x, m/2 - y) \quad n, m \in \mathbb{Z}.$$
 $$(x, y) \mapsto (n - x, y) \quad n, m \in \mathbb{Z}.$$
Example: Tiling by rectangles of \mathbb{R}^2 (cont.)

The group G_Ω consists of:

- Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:
 $$(x, y) \mapsto (x, y) + (2n, m), \quad n, m \in \mathbb{Z}. $$

- Reflections through points in $\frac{1}{2}\Lambda = \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:
 $$(x, y) \mapsto (n - x, m/2 - y), \quad n, m \in \mathbb{Z}. $$

- Reflections through horizontal and vertical lines:
 $$(x, y) \mapsto (x, m/2 - y) \quad n, m \in \mathbb{Z}. $$
 $$(x, y) \mapsto (n - x, y) \quad n, m \in \mathbb{Z}. $$

The tiling has a lot of symmetry!
This gives a very successful theory:

• symmetry groups of tilings;
• symmetry groups of crystals;
• symmetry groups of differential equations;
• symmetry groups of geometric structures;

...
This gives a very successful theory:

- symmetry groups of tilings;
- symmetry groups of crystals;
- symmetry groups of differential equations;
- symmetry groups of geometric structures;

...But ...
3. Need for a new credo
Instead of tiling, take B a **real** bathroom floor:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instead of tiling, take B a **real** bathroom floor:

The group of symmetries shrinks drastically:

$$G_B = \mathbb{Z}_2 \times \mathbb{Z}_2.$$

It contains only 4 elements!
Instead of tiling, take B a **real** bathroom floor:

\[
\begin{array}{cccc}
\emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

The group of symmetries shrinks drastically:

\[G_B = \mathbb{Z}_2 \times \mathbb{Z}_2.\]

It contains only 4 elements!

However, we can still recognize a repetitive pattern...
Not surprising! There are *very few* symmetry groups:
Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:
Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

- The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:
Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

- The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:

- The group D_n of symmetries of a regular n-side polyhedron:
Not surprising! There are *very few* symmetry groups:

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

- The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:

![Diagram of a regular polygon with a star]

- The group D_n of symmetries of a regular n-side polyhedron:

![Diagram of a regular octahedron]

- The 3 groups of symmetries of the platonic solids.
For example, the molecule of the fullerene C_{60}:

has the same symmetry group as the icosahedron:
For example, the molecule of the fullerene C_{60}:

has the same symmetry group as the icosahedron:

(just truncate the vertexes of the icosahedron).
4. Symmetry groupoids

To distinguish the soccer ball from the icosahedron, to describe the symmetry of a bathroom floor, and in many other problems, we need groupoids.
Look again at the tiling Ω.
Look again at the tiling Ω. Define:

\[G_\Omega = \{(x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_\Omega \text{ and } x = \phi(y)\} \]
Look again at the tiling Ω. Define:

$$G_\Omega = \{(x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_\Omega \text{ and } x = \phi(y)\}$$

with the partially defined multiplication:

$$(x, \phi, y)(y, \psi, z) = (x, \phi \circ \psi, z).$$
Look again at the tiling Ω. Define:

$$G_\Omega = \{(x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_\Omega \text{ and } x = \phi(y)\}$$

with the *partially defined multiplication*:

$$(x, \phi, y)(y, \psi, z) = (x, \phi \circ \psi, z).$$

We can view each $g = (x, \phi, y) \in G$ as an arrow:

$$
\begin{array}{c}
\bullet \\
\downarrow \\
x \\
\bullet \\
y
\end{array}
\begin{array}{c}
\bullet \\
\downarrow \\
g \\
\bullet \\
\end{array}
$$
Look again at the tiling Ω. Define:

$$\mathcal{G}_\Omega = \{(x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in \mathcal{G}_\Omega \text{ and } x = \phi(y)\}$$

with the partially defined multiplication:

$$(x, \phi, y)(y, \psi, z) = (x, \phi \circ \psi, z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

Now, we have:

- **source** and **target maps** $s, t : \mathcal{G} \to \mathbb{R}^2$:

 $$s(x, \phi, y) = y, \quad t(x, \phi, y) = x.$$
Look again at the tiling Ω. Define:

$$\mathcal{G}_\Omega = \{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in \mathcal{G}_\Omega \text{ and } x = \phi(y) \}$$

with the \textit{partially defined multiplication}:

$$(x, \phi, y)(y, \psi, z) = (x, \phi \circ \psi, z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

\[
\begin{array}{cc}
\bullet & \bullet \\
g & \\
\bullet & \bullet \\
x & y
\end{array}
\]

Now, we have:

- \textit{source} and \textit{target maps} $s, t : \mathcal{G} \to \mathbb{R}^2$:

 $$s(x, \phi, y) = y, \quad t(x, \phi, y) = x.$$

- \textit{identity arrows} $1_x = (x, I, x)$:

 $$\begin{array}{c}
 1_x \\
 \circ \\
 x
 \end{array}$$
Look again at the tiling Ω. Define:

$$G_{\Omega} = \{(x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y)\}$$

with the partially defined multiplication:

$$(x, \phi, y)(y, \psi, z) = (x, \phi \circ \psi, z).$$

We can view each $g = (x, \phi, y) \in G$ as an arrow:

Now, we have:

- **source and target maps** $s, t : G \to \mathbb{R}^2$:
 $$s(x, \phi, y) = y, \quad t(x, \phi, y) = x.$$

- **identity arrows** $1_x = (x, I, x)$:
 $$1_x,$$

- **inverse arrows** $g^{-1} = (y, \phi^{-1}, x)$:
They satisfy group like properties:
They satisfy group like properties:

1. **Multipl:** \((g, h) \mapsto gh\), defined iff \(s(g) = t(h)\);
They satisfy group like properties:

1. **Multipl:** \((g, h) \mapsto gh\), defined iff \(s(g) = t(h)\);

2. **Associativity:** \((gh)k = g(hk)\) whenever defined;
They satisfy group like properties:

1. **Multipl:** \((g, h) \mapsto gh\), defined iff \(s(g) = t(h)\);
2. **Associativity:** \((gh)k = g(hk)\) whenever defined;
3. **Identities:** \(1_xg = g = g1_y\), if \(t(g) = x, s(g) = y\);
They satisfy group like properties:

1. **Multipl:** \((g, h) \mapsto gh\), defined iff \(s(g) = t(h)\);
2. **Associativity:** \((gh)k = g(hk)\) whenever defined;
3. **Identities:** \(1_xg = g = g1_y\), if \(t(g) = x, s(g) = y\);
4. **Inverse:** \(g g^{-1} = 1_x\) and \(g^{-1}g = 1_y\).
They satisfy group like properties:

1. **Multipl:** \((g, h) \mapsto gh\), defined iff \(s(g) = t(h)\);
2. **Associativity:** \((gh)k = g(hk)\) whenever defined;
3. **Identities:** \(1_xg = g = g1_y\), if \(t(g) = x, s(g) = y\);
4. **Inverse:** \(gg^{-1} = 1_x\) and \(g^{-1}g = 1_y\).

Definition 4.1. A **groupoid** with base \(B\) is a set \(\mathcal{G}\) with maps \(s, t : \mathcal{G} \to B\) and operation satisfying 1–4.
We can restrict the symmetry groupoid G_Ω of the tiling, to the real bathroom floor $B \subset \mathbb{R}^2$:

$$G_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$
We can restrict the symmetry groupoid G_{Ω} of the tiling, to the real bathroom floor $B \subset \mathbb{R}^2$:

$$G_B = \{(x, \phi, y) : x, y \in B, \phi \in G_{\Omega} \text{ and } x = \phi(y)\}.$$

The groupoid G_B captures the symmetry of the real bathroom floor.
We can restrict the symmetry groupoid G_Ω of the tiling, to the real bathroom floor $B \subset \mathbb{R}^2$:

$$G_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid G_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:
We can restrict the symmetry groupoid \mathcal{G}_Ω of the tiling, to the real bathroom floor $B \subset \mathbb{R}^2$:

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:

- Two elements $x, y \in B$ belong to the same orbit of \mathcal{G} if they can be connected by an arrow:

$$\xrightarrow{g}$$

where $x \xrightarrow{g} y$.

- Two elements $x, y \in B$ belong to the same orbit of \mathcal{G} if they can be connected by an arrow:
We can restrict the symmetry groupoid \mathcal{G}_Ω of the tiling, to the real bathroom floor $B \subset \mathbb{R}^2$:

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:

- Two elements $x, y \in B$ belong to the same orbit of \mathcal{G} if they can be connected by an arrow:

 $\begin{array}{c}
 x \\
 \downarrow \\
 \downarrow \\
 y
 \end{array} \xrightarrow{g} \begin{array}{c}
 \bullet \\
 \bullet
 \end{array}$

- The isotropy group of $x \in B$ is the set of arrows $g \in \mathcal{G}$ from x to x:

 $\begin{array}{c}
 x \\
 \circlearrowleft
 \end{array}$
For the symmetry groupoid g_B of the real bathroom floor:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:

```
●          ●
●          ●
```
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid g_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:
For the symmetry groupoid \mathcal{G}_B of the real bathroom floor:

- The orbits consist of points similarly placed within their tiles, or within the grout:

- The only points with non-trivial isotropy are those in $(\mathbb{Z} \times \frac{1}{2}\mathbb{Z}) \cap B$. For these, the isotropy group is:

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2.$$
5. Other groupoids

Groupoids play an important role in many other contexts, not related with symmetry.
Fundamental Groupoid of a space
Fundamental Groupoid of a space

X any topological space
Look at continuous curves $\gamma : [0, 1] \rightarrow X$
Fundamental Groupoid of a space

X any topological space
Look at continuous curves $\gamma : [0, 1] \to X$
Fundamental Groupoid of a space

X any \textit{topological} space

Look at \textit{continuous} curves $\gamma : [0, 1] \rightarrow X$
Fundamental Groupoid of a space

\(X \) any topological space

Look at continuous curves \(\gamma : [0, 1] \rightarrow X \)
Fundamental Groupoid of a space

X any *topological* space
Look at *continuous* curves $\gamma : [0, 1] \to X$
Fundamental Groupoid of a space

X any *topological* space

Look at *continuous* curves $\gamma : [0, 1] \rightarrow X$
Fundamental Groupoid of a space

X any topological space

Look at continuous curves $\gamma : [0, 1] \to X$

$$[\gamma] \equiv \text{homotopy class of } \gamma$$
Fundamental Groupoid of a space

X any topological space
Look at continuous curves $\gamma : [0, 1] \rightarrow X$

$[\gamma] \equiv \text{homotopy class of } \gamma$ \hspace{1em} (e.g. $[\gamma_0] = [\gamma_1]$ but $[\gamma_0] \neq [\eta]$).
Fundamental Groupoid of a space

X any topological space
Look at continuous curves $\gamma : [0, 1] \to X$

$[\gamma] \equiv$ homotopy class of γ (e.g. $[\gamma_0] = [\gamma_1]$ but $[\gamma_0] \neq [\eta]$).

The fundamental groupoid of X is:

$$\Pi(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}.$$
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

the structure maps are:
For the fundamental groupoid

$$\Pi(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

the structure maps are:

- **source** and **target** give initial and final points:

 \[s([\gamma]) = \gamma(0), \quad t([\gamma]) = \gamma(1); \]
For the fundamental groupoid

$$\Pi(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

the structure maps are:

- **source** and **target** give initial and final points:

 $$s([\gamma]) = \gamma(0), \quad t([\gamma]) = \gamma(1);$$

- **product** is concatenation of curves:

 $$[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$$
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

the structure maps are:

- **source** and **target** give initial and final points:
 \[s([\gamma]) = \gamma(0), \quad t([\gamma]) = \gamma(1); \]

- **product** is concatenation of curves:
 \[[\gamma] \cdot [\eta] = [\gamma \cdot \eta]; \]

- **units** are the constant curves:
 \[1_x = [\gamma], \quad \text{where } \gamma(t) = x; \]
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

the structure maps are:

- **source** and **target** give initial and final points:

 \[s([\gamma]) = \gamma(0), \quad t([\gamma]) = \gamma(1); \]

- **product** is concatenation of curves:

 \[[\gamma] \cdot [\eta] = [\gamma \cdot \eta]; \]

- **units** are the constant curves:

 \[1_x = [\gamma], \quad \text{where } \gamma(t) = x; \]

- **inverse** is the opposite curve:

 \[[\gamma]^{-1} = [\overline{\gamma}], \quad \text{where } \overline{\gamma}(t) = \gamma(1 - t). \]
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

one has:
For the fundamental groupoid

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \rightarrow X \}$$

one has:

- One orbit for each connected component of X;
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

one has:

- One orbit for each connected component of \(X \);
- Isotropy group of \(x \in X \) is the fundamental group:

\[\pi(X, x) = \{ [\gamma] \mid \gamma \text{ is a loop based at } x \} . \]
For the fundamental groupoid

$$\Pi(X) = \{[\gamma] \mid \gamma : [0, 1] \to X\}$$

one has:

- One orbit for each connected component of X;
- Isotropy group of $x \in X$ is the fundamental group:
 $$\pi(X, x) = \{[\gamma] \mid \gamma \text{ is a loop based at } x\}. $$

This is by no means trivial!
For the fundamental groupoid

\[\Pi(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \]

one has:

- One orbit for each connected component of \(X \);
- Isotropy group of \(x \in X \) is the fundamental group:

\[\pi(X, x) = \{ [\gamma] \mid \gamma \text{ is a loop based at } x \} . \]

This is by no means trivial!

Examples:

- If \(X = SO(2) \) one has \(\pi(X, x) = \mathbb{Z} \).
- If \(X = SO(n) \) one has \(\pi(X, x) = \mathbb{Z}_2 = \{+1, -1\} \).
Groupoids and control theory

X a foliated space:
Groupoids and control theory

X a foliated space:

Now, we can only deform curves lying on leaves of the foliation \mathcal{F}.
Groupoids and control theory

X a foliated space:

Now, we can only deform curves lying on leaves of the foliation \mathcal{F}. We obtain the monodromy groupoid of the foliation:

$$\Pi(\mathcal{F}) = \{[\gamma] \mid \gamma : [0, 1] \to L, \ L \text{ is a leaf of } \mathcal{F}\}.$$
Groupoids and control theory

X a foliated space:

Now, we can only deform curves lying on leaves of the foliation \mathcal{F}. We obtain the \textit{monodromy groupoid} of the foliation:

$$\Pi(\mathcal{F}) = \{[\gamma] | \gamma : [0, 1] \to L, \ L \text{ is a leaf of } \mathcal{F}\}.$$

- Orbits are the leaves of \mathcal{F};
- Isotropy groups are the fundamental groups of the leaves.
In control theory:

\[
\text{ORBITS} = \text{ACCESSIBLE SETS}
\]
In control theory:

ORBITS = ACCESSIBLE SETS

Typical problem: (*stability*)
Fix an orbit L_0. Is there a nearby orbit L diffeomorphic to L_0?
In control theory:

ORBITS = ACCESSIBLE SETS

Typical problem: (*stability*)
Fix an orbit L_0. Is there a nearby orbit L diffeomorphic to L_0?

This is where the *real math* starts and where this talk stops...