Principal G-bundles

Recall a principal G-bundle is given by a G-space P with a G-invariant submersion $\pi: P \to M$ such that:

\[(x) \quad G \times P \to P \times P, \quad (g, p) \mapsto (gp, p) \quad \text{is a diffeomorphism} \]

Remark: (x) says that the action correspondence $G \times P \to P$ is isomorphic to the submersion correspondence $P \times P \to P$, which is a way of expressing that action is proper and free (since action $G \times P \to P$ is proper and free of isotropy).

Examples

1) For a Lie group $G = \{x\}$ this recovers usual notion of principal G-bundle.

2) Any Lie groupoid $G \to M$, left action on itself gives a principal G-bundle:

\[
\begin{align*}
G \times M & \to M \\
G & \to M
\end{align*}
\]

3) For a general principal G-bundle $P \to X$, each fiber $\tilde{\pi}(x)$ is isomorphic to a source fiber $\tilde{\sigma}(p)$ where $p = \mu(x), \nu \in \tilde{\sigma}$.

\[
\tilde{\sigma}(p) \to \tilde{\pi}(x), \quad g \mapsto g \nu
\]

4) If $G = G \times M \to M$ a principal G-bundle is just an ordinary principal G-bundle $\pi: P \to X$ together with a G-equivariant map $\mu: P \to M$.

Morphisms:

A morphism or principal G-bundle is a map between principal G-bundles

$$\Phi : P_1 \to P_2$$

which is G-equivariant:

$$\Phi(gu) = g \Phi(u)$$

In particular:

$$P_1 \xrightarrow{\Phi} P_2 \quad P_1 \xrightarrow{\Phi} P_2 \quad \pi_1 \xrightarrow{\Phi} \pi_2 \quad X_1 \xrightarrow{\phi} X_2$$

For a smooth map $\phi : X_1 \to X_2$.

Pullbacks:

- $P \to X$ principal G-bundle \to principal G-bundle: $\phi^*P \to Y$
- $\phi : Y \to X$

The map $\Phi : \phi^*P \to P$ is a morphism of principal G-bundles.

Proposition:

Every morphism of principal G-bundles

$$P_1 \xrightarrow{\Phi} P_2 \quad \pi_1 \xrightarrow{\Phi} \pi_2 \quad X_1 \xrightarrow{\phi} X_2$$

induces an isomorphism:

$$P_1 \xrightarrow{\phi^*} \phi^*P_2 \quad \pi_1 \xrightarrow{\phi^*} \pi_2 \quad X_1 \xrightarrow{1 \phi} X_1$$

Proof: A morphism covering $1d$ is an isomorphism.
Local triviality

A principal G-bundle $P \xrightarrow{\pi} X$ is trivial if it is isomorphic to pullback of the unit principal G-bundle $G \times M$.

Lemma. For a principal G-bundle $P \xrightarrow{\pi} X$ the following are equivalent:

(i) $P \xrightarrow{\pi} X$ is trivial

(ii) There exists a morphism $\Phi : P \rightarrow G$

(iii) $P \xrightarrow{\pi} X$ has a section

Proof:

(i) \Rightarrow (ii)

\[
\begin{array}{c}
P \xrightarrow{\Phi} G \\
\downarrow \quad \downarrow \\
X \xrightarrow{id} X \xrightarrow{\pi} M
\end{array}
\]

(i) \Rightarrow (iii)

$\Phi^* G = X \times_G G \\
\text{and} \\
\pi \downarrow \quad \downarrow \\
X \xrightarrow{\Phi^*} G$

(iii) \Rightarrow (i)

For any principal G-bundle $\pi : P \rightarrow X$ is a surjective submersion, so it admits local sections.

\Rightarrow principal G-bundles are locally trivial

\[
\begin{array}{c}
P \xrightarrow{\pi} X \\
\downarrow \quad \downarrow \\
M \xrightarrow{s^*_a} U_a \\
\Rightarrow \\
P_{|U_a} = \phi^*_a G
\end{array}
\]
Cocycle description

Given principal G-bundle $\pi: P \to X$ over X by open sets $\{U_a\}$ where there exist local sections $s_a: U_a \to P$

- $\phi_a: \pi \circ s_a: U_a \to M$, $P|_{U_a} \cong \phi_a^* G$

- On $U_{ap} := U_a \cap U_p$:

$$\phi_a^* G|_{U_{ap}} \cong \phi_p^* G|_{U_{ap}}$$

where $g_{pa}: U_{ap} \to G$ are analogs:

$$\phi_a(g) \to \phi_p(g_{pa}(g))$$

- On triple intersections:

$$\theta_{ap}(g_{pa}(g)) = g_{ap}(g) \quad (g \in U_{ap})$$

A G-cocycle is a family (ϕ_a, g_{ap}) with $\phi_a: U_a \to M, g_{ap}: U_{ap} \to G$:

so $g_{pa} = \phi_a$, to $g_{pa} = \phi_p$ (on U_{ap})

$\theta_{ap} g_{pa} = g_{ap} \quad (\phi \in U_{ap})$

Two G-cocycles $(\phi_a, g_{ap}) \neq (\tilde{\phi}_a, \tilde{g}_{ap})$ are equivalent if $\exists \lambda_a: U_a \to G$

so $\lambda_a = \phi_a$, to $\lambda_a = \tilde{\phi}_a$ (on U_a)

$$\tilde{g}_{pa} = \lambda_p \cdot g_{pa} \cdot \lambda_a^{-1} \quad (\text{on } U_{ap})$$

After refinement, this gives equivalence relation and one finds:

Principal G-bundles/iso $\leftrightarrow G$-cocycles/equiv.

Rem: One can also describe generalized maps and Morita equivalences using principal G-bundles (see Bibliography).
Differentiable Stacks

A differentiable stack is a (very general) notion of singular space, generalizing manifolds.

A differentiable stack is a Morita equivalence class of Lie groupoids. There is a more conceptual way of approaching them based on Grothendieck's philosophy of the "functor of points":

- A manifold M is completely determined, up to canonical isomorphism, by the set of all smooth maps $X \to M$, where X is a manifold. Equivalently, by the set of all smooth maps $\mathbb{R}^n \to M$ ($n=0,1,...$).

Formally, this means replacing M by the representable functor:

$$ M : \text{Manifolds} \to \text{Sets} \quad \begin{cases} M(X) = \{ f : X \to M \} \\ M(X \times X') = \{ f \mapsto f \circ g \} \end{cases} $$

A singular space is a more general "functor" $\text{Manifolds} \to \text{Sets}$ which is not necessarily representable (i.e., equivalent to some M). This philosophy is completed by observing that:

Exercise: Show that there is a bijection:

$$ C^\infty(M_1, M_2) \leftrightarrow \text{Nat}(M_1, M_2) $$

(This is a version of Yoneda's Lemma).

We are now going to formalize this and provide the connection with Lie groupoids.
Notation:
- \mathcal{M} is category of C^∞-manifolds & C^∞-maps
- Given $X \in \mathcal{M}$ a covering family of X is any family
 \[\{ U_i, f_i : X \} \] where f_i are étale & $\bigcup_i f_i(U_i) = X$

Rmk:
1) Covering families define a unique Grothendieck topology on \mathcal{M}, called the étale topology. A category equipped with a Grothendieck topology is called a site. In what follows \mathcal{M} can be replaced by any site. One then obtains topological stacks, algebraic stacks, etc., by replacing \mathcal{M} by Top or Sch.

2) $\text{Obj}(\mathcal{M})$ is not a set. One can replace \mathcal{M} by:
- \mathcal{M}_{emb} = w/ objects embedded submanifolds in some \mathbb{R}^n
- \mathcal{R} = w/ objects = \{ \mathbb{R}^i, \mathbb{R}^1, \mathbb{R}^2, \ldots \}
- $\text{Euc} = \text{w/ objects disjoint unions of open subsets in some } \mathbb{R}^n$

Defn: A category fibred in groupoids $\pi : \mathcal{G} \to \mathcal{M}$ is a functor from some category satisfying:

(i) For every $f : X' \to X \in \mathcal{G}$ over X, there exists $g : C' \to C$ in \mathcal{G} with $\pi(g) = f$.

\[\begin{array}{ccc}
\text{C'} & \xrightarrow{\pi} & X' \\
\downarrow g & & \downarrow f \\
\text{C} & \xrightarrow{\pi} & X = \pi(C)
\end{array} \]

(ii) Given a diagram:

\[\begin{array}{ccc}
C_1 & \xrightarrow{g_1} & C_2 \\
\downarrow g & & \downarrow g_2 \\
C_1' & \xleftarrow{g} & C_2'
\end{array} \quad \Rightarrow \quad \begin{array}{ccc}
X_1 & \xrightarrow{f_1} & X_2 \\
\downarrow f & & \downarrow f_2 \\
X_1' & \xleftarrow{f} & X_2'
\end{array} \]

There is a unique lift g. \]
Rules:
- We have not used yet conclusive families (i.e., the Grothendieck topology).
 By (ii) The object \(C \)' in (i) is unique up to a unique isomorphism.
 One calls \(C \)' a pullback of \(C \) via \(f: X \rightarrow X \) and one often writes
 \[C' \cong C|_{X} = f^{*}C \]
- Fixing \(X \in \mathcal{M} \), we have the fiber over \(X \), which is
 the subcategory \(G_{X} \subset G \) with:
 \[
 \text{Obj} \ (G_{X}) = \{ \ C \in \text{Obj} \ (G) : \pi(C) = X \} \\
 \text{Arr} \ (G_{X}) = \{ \ f \in \text{Arr} \ (G) : \pi(f) = \text{id}_X \}
 \]

Exercise: Using (ii), show that fibers \(G_{X} \) are groupoids, i.e., every arrow in \(G_{X} \) has an inverse.

Abreviation: Tiberia category = category fiber over in groupoids

Examples:
1) Fix \(M \in \mathcal{M} \). Let \(G = \mathcal{M} \) be the category

\[
\text{Obj} \ (\mathcal{M}) = \{ \ f: X \rightarrow M \} \\
\text{Arr} \ (\mathcal{M}) = \{ \ \begin{array}{c}
X_1 \xymatrix{ & X \ar[d]_{f_1} \ar[r]^{f_2} & M \ar[l]_f \\
X_2 \ar@{.>}[ur]_{g} &
\end{array} \}
\]

It is a fibered category for the forgetful functor:

\[
\pi: \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}
\]
Both axioms hold:

1) Given \((g: X' \to X) \in \text{Ar} (M) \) \& \((f_2: X \to M) \in \text{Obj} (M) \)

An object over \(M \), we have the pullback:

\[
\begin{array}{ccc}
X' & \xrightarrow{s} & X \\
\downarrow & & \downarrow \\
M & \xrightarrow{\pi} & X \\
\end{array}
\]

\[g \circ f_2 \]

In this example:

pullbacks are unique on fibres and identity objects

Def. A **discrete fibre category** over \(M \) is a fibre category \(\pi: G \to M \) such that \(G_x \) is an identity category for all \(x \in M \).

2) Let \(G \) be a Lie group and \(G = BG \) be the category:

\[\text{Obj} (BG) = \text{principal } G \text{-bundles; } p: P \to X \]

\[\text{Ar} (BG) = \text{morphisms of principal } G \text{-bundles} \]

\[P_1 \xrightarrow{\gamma} P_2 \]

\[P_1 \downarrow \quad \downarrow P_2 \]

\[X_1 \xrightarrow{g_1} X_2 \]

The forgetful functor \(\pi: BG \to M \) is a fibre category.

One checks that (i) and (ii) hold. Note that pullbacks are not unique, there are only unique up to a unique isomorphism.

Exercise: Show that principal \(G \)-bundles in connection also give a fibre category \(\pi: BG \to M \).
3) More generally, any Lie groupoid $G \rightrightarrows M$ defines a fibered category
$$\pi : BG \to M$$
with:
$$\text{Obj} (BG) = \{ \text{principal } G\text{-bundles } \xrightarrow{\pi} X \}_{M}$$
$$\text{Arr} (BG) = \{ \text{morphisms of principal } G\text{-bundles } \}_{\pi}$$
π = Forgetful function: $\pi (P) = X$

3) Let $G = \mathcal{F}_G$ be the category:
$$\text{Obj} (\mathcal{F}_G) = \{ \text{fiber bundles } p : E \to X \text{ by fiber a Riemann surface }$$
$$\text{of genus } g \text{ with complex structure smoothly varying on fibers} \}$$
$$\text{Arr} (\mathcal{F}_G) = \{ \text{commutative diagrams} \}_{\mathcal{F}_G}$$

$$\begin{array}{ccc}
E_1 & \longrightarrow & E_2 \\
\downarrow{P_1} & & \downarrow{P_2} \\
X_1 & \longrightarrow & X_2
\end{array}$$
with:
$$E_1 \longrightarrow X_1 \times E_2$$
$$X_1 \longrightarrow X_2$$
a conformal isomorphism.

The Forgetful function $\pi : \mathcal{F}_G \to M$ is a fibered category.

Remark: Often fibred categories arise as in previous example from moduli problems. Then one thinks of the fibred category $\pi : G \rightrightarrows M$ as:
- An object in G over M is a G-family parameterized by M.
- Aim is to classify all objects over $pt \in M$.